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Range fragmentation poses challenges for species persistence over time and can be caused by both historical and 
contemporary processes. We combined genomic data, phylogeographical model testing and palaeoclimatic niche modelling 
to infer the evolutionary history of the Pine Barrens tree frog (Hyla andersonii), a seepage bog specialist, in eastern 
North America to gain a better understanding of the historical context of its fragmented distribution. We sampled 
H. andersonii populations across the three disjunct regions of the species range: Alabama/Florida (AF), the Carolinas 
(CL) and New Jersey (NJ). Phylogenetic relationships within H. andersonii were consistent between the nuclear species 
tree and mitochondrial analyses, indicating divergence between AF and CL/NJ (Atlantic clade) ~0.9 Mya and divergence 
of the NJ clade ~0.15 Mya. Several predictions of north-eastern expansion along the Atlantic coast were supported 
by phylogeographical analyses. Model testing using genome-wide single nucleotide polymorphism data and species 
distribution models both provided evidence for multiple disjunct refugia. This comprehensive phylogeographical study of 
H. andersonii demonstrates a long history of range fragmentation within an endemic coastal plain species and highlights 
the influence of historical climate change on the current distribution of species and their genetic diversity.

ADDITIONAL KEYWORDS:   anchored hybrid enrichment – divergence time – Last Glacial Maximum – model 
selection – sequence capture – species distribution models.

INTRODUCTION

Range fragmentation can be detrimental for species 
persistence by reducing dispersal and gene flow, population 
sizes and the genetic diversity that underlies adaptation to 
changing environments (Fahrig, 2003; Frankham, 2005). 
Given that fragmented distributions have arisen through 
a combination of historical and contemporary factors, 
species with disjunct ranges can be particularly intriguing, 
yet challenging to study (Hochheimer & Hoffmann, 2016). 
Genetic breaks within continuously distributed species 

can coincide with obvious biogeographical barriers (Soltis 
et al., 2006; Bell et al., 2012), but the processes that gave 
rise to highly fragmented distributions may no longer be 
readily apparent. Inferring the evolutionary history of 
fragmented species with genomic data and model-based 
approaches can reveal how long populations have been 
isolated, how they responded to past environmental 
changes and how diversity is currently distributed across 
the landscape.

The North American Coastal Plain (NACP) is 
recognized as a global biodiversity hotspot (Noss et al., 
2015) and has been a focal area in phylogeography 
for several decades (Avise et al., 1987; Avise, 2000). 
Various taxa within the NACP have fragmented 
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distributions, probably influenced by glacial cycles 
and concomitant shifts in forests, sea levels and 
coastlines starting during the Pleistocene ~2.58 Mya 
(Haq et al., 1987; Williams et al., 2004). During glacial 
periods, many species ranges shifted southwards to 
refugia, or areas of climatic stability and expanded 
land mass, such as peninsular Florida and the western 
Gulf coast (Marshall et al. 2002; Swenson & Howard, 
2005). As glaciers receded, species then tracked shifts 
in suitable habitat and climate while expanding 
northwards (prediction of north-eastern expansion). In 
some cases, species persisted into the present only in 
disjunct patches (Sorrie & Weakley, 2001). The degree 
of range fragmentation varies widely among species 
and was recently quantified for amphibians in the 
NACP (Newman & Austin, 2019). Amphibians may be 
particularly vulnerable to range fragmentation given 
their reliance on aquatic and terrestrial environments, 
continued habitat loss and major threats, such as 
disease (Stuart et al., 2004; Lips, 2016), highlighting 
the need to gain a better understanding of the processes 
underlying their distributions and genetic diversity.

One amphibian species endemic to the NACP with 
a highly disjunct distribution is the Pine Barrens 
tree frog [Hyla andersonii (Baird, 1854); Fig. 1]. This 
seepage bog specialist occurs in three regions, each 
separated by > 470 km: Alabama and Florida (AF), 
North and South Carolina (CL) and New Jersey 
(NJ). Resolving the relationships among regions is 
necessary for management of H. andersonii because 
it is considered near threatened (Hammerson, 2017) 
and state-listed in all but Florida (Moler et al., 2020). 
Disjunct distributions can be difficult to address in 
a conservation framework, particularly when it is 
unclear whether isolation was the result of natural 
or human causes (Reilly et al., 2014). The strong 
similarities in morphology and behaviour among the 
three regions of H. andersonii (Warwick et al., 2015) 
suggest hypotheses of either recent divergences, with 
little time for differences to accumulate, or older 
divergences, with consistent selective pressures across 
regions to maintain these similarities. Previous work 
indicated that NJ and CL populations were most 
closely related (Karlin et al., 1982; Lemmon et al., 
2007; Warwick et al., 2015; Oswald et al., 2020), but the 
phylogeographical history of the species has not been 
investigated fully. Advances in genomic data collection 
over the last decade provide higher-resolution data 
that will enable rigorous hypothesis testing (Garrick 
et al., 2015).

Owing to the habitat specialization of H. andersonii 
(Means, 2006), our hypotheses about its evolutionary 
history can be informed by wetland-associated plant 
species, many of which are distributed in a similar 
manner (Chamaecyparis thyoides, Little, 1971; Drosera 
filiformis, Rice, 2011; and part of the range of Sarracenia 

purpurea, Godt & Hamrick, 1998). In addition, Sorrie 
& Weakley (2001) identified 27 different geographical 
distribution patterns of vascular plants in the NACP, 
which included disjunct patterns similar to that of 
H. andersonii. One disjunct pattern was found for eight 
plant species across NJ/Delaware and the Carolinas, 
possibly explained by previously continuous (late 
Pleistocene) distributions that were divided when sea 
levels rose in the Holocene (Sorrie & Weakley, 2001). 
A second pattern was identified in 11 plant species 
across the Carolinas and eastern Gulf Coastal Plain. 
In this region, the Georgia Tifton/Vidalia uplands and 
Florida Central Highlands have been suggested as a 
significant phylogeographical barrier for some coastal 
lowland taxa because lowlands would have been subject 
to periodic oceanic flooding during Plio-Pleistocene 
interglacials (Liu et al., 2006). Given this historical 
context, we addressed three main questions and their 
associated predictions for H. andersonii:

	1.	 How long have populations in these regions been 
isolated? We predict either more recent (Holocene) 
or older (Pleistocene) divergences.

Figure 1.  Sampling localities for Hyla andersonii genomic 
data. The North American Coastal Plain is shown in 
grey. The county-level species range map is shown in tan 
and is based on Hammerson (2017), with the addition of 
Marlboro County, South Carolina, from which historical 
localities are known. Abbreviations: AF, Alabama/Florida; 
CL, the Carolinas; NJ, New Jersey. Photograph credit: A. R. 
Warwick.
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	2.	 How many refugia were there? We predict multiple 
[two (AF and CL) or three (AF, CL, and NJ)] refugial 
areas.

	3.	 What was the direction of colonization? We predict 
north-eastern expansion, with the lowest genetic 
diversity in NJ and greater dispersal distances in 
CL and NJ.

We combined new genome-scale mitochondrial 
DNA (mtDNA) and nuclear data with palaeoclimate 
species distribution modelling (SDM) to assess our 
predictions independently. Our objectives were as 
follows: (1) to infer the phylogenetic relationships and 
estimate divergence times within H. andersonii; (2) 
to test predictions of north-eastern expansion with 
a spatial diffusion approach; (3) to compare models 
with different numbers of refugia and colonization 
histories; and (4) to generate SDMs for current climate 
and three historical time points to identify potential 
refugia and evaluate the response of this species to 
historical climate change.

MATERIAL AND METHODS

Field and genomic data collection

Historical and known contemporary locations across 
the range of H. andersonii were visited from 2010 to 
2014. Tissue samples were collected by capturing adult 
frogs by hand, of which 26 samples were selected for the 
present study (Fig. 1; Supporting Information, Table 
S1). Each sample represents a different population, 
and those population locations reflect the current 
known species distribution with equal representation 
per region. Two Hyla femoralis individuals, one 
each from North Carolina and Florida, were used 
as outgroups (Supporting Information, Table S1). 
Samples were immersed in tissue buffer (20% dimethyl 
sulfoxide and 0.25 M EDTA, salt saturated) in the field 
and subsequently stored at −80 °C at Florida State 
University (FSU). Total genomic DNA was purified 
from toe clips or liver using either an Omega Bio-Tek 
E.Z.N.A. Tissue DNA Kit or an alcohol precipitation 
method (for details, see Warwick et al., 2015).

We processed all 28 samples at FSU’s Center for 
Anchored Phylogenomics (www.anchoredphylogeny.
com) using the hybrid enrichment protocol described 
by Lemmon et al. (2012). Briefly, each sample was 
sonicated to an average fragment size of ~300 bp 
using a Covaris E220 focused ultrasonicator. Library 
preparation and indexing were completed on a 
Beckman-Coulter Biomex FXp liquid-handling robot 
according to a protocol modified from the study by 
Meyer & Kircher (2010). Indexed samples were 
pooled in equal quantities (12–16 samples per pool) 
before hybrid enrichment using an Agilent Custom 

SureSelect kit. We used the Pseudacris v.1 probe set 
described by Banker et al. (2020), which consists of 
366 deep-scale loci designed for amphibians (Barrow 
et al., 2018; Hime et al., 2021) and 1250 shallow-scale 
loci designed from the chorus frogs Pseudacris nigrita 
and Pseudacris feriarum (Family Hylidae). After 
enrichment for these 1616 anchored loci, samples were 
pooled into a group of ≤ 48 samples for sequencing on 
one PE150 lane of an Illumina HiSeq 2000 at the FSU 
College of Medicine.

Bioinformatic processing

Raw sequencing reads were quality filtered and 
demultiplexed using CASAVA v.1.8.2 (Illumina). 
Mitochondrial (mtDNA) genomes were assembled 
as sequencing ‘bycatch’ using SeqMan Pro NGEN 
v.12.3.1, following the protocol described by Barrow 
et al. (2017). Briefly, a reference H. femoralis mtDNA 
genome (ARW436) was constructed by mapping reads 
to H.  femoralis gene sequences downloaded from 
GenBank (Supporting Information, Table S2). Raw 
reads for each individual were then mapped to that 
reference. We inspected assemblies manually, aligned 
consensus sequences in Geneious v.8.1.3 using 
the MAFFT v.7.222 (Katoh et al., 2002) plugin, and 
annotated genomes based on the H. japonica genome 
(GenBank accession no. AB303949; Igawa et al., 2008).

Anchored loci were assembled using the quasi-de 
novo approach described by Prum et al. (2015) and 
Hamilton et al. (2016). After merging paired-end 
reads as described by Rokyta et al. (2012), assemblies 
were generated using both reference-based and 
extension methods. Allele phasing and orthology 
assessment were completed following the methods of 
Pyron et al. (2016). We aligned consensus sequences 
across individuals using MAFFT v.7.023b (Katoh 
& Standley, 2013) and then trimmed and masked 
alignments to remove ambiguously aligned regions 
(Hamilton et al., 2016).

We generated two nuclear datasets for downstream 
analyses. For phylogenetic analyses, we used 
the sequence alignments with 28 individuals 
including the outgroup samples (H.  femoralis). 
For phylogeographical model testing, we extracted 
single nucleotide polymorphisms (SNPs) from only 
H. andersonii samples using custom python scripts 
(Barrow et al., 2018; available on Dryad). To maximize 
the number of SNPs with no missing data, we retained 
the 21 individuals (seven per region) with the most loci 
recovered. We randomly selected one SNP per locus to 
avoid violating assumptions of independence. Genetic 
diversity metrics (expected heterozygosity and allelic 
richness) were estimated in R (R Core Team, 2019) 
using the packages ‘adegenet’ (Jombart, 2008) and 
‘PopGenReport’ (Adamack & Gruber, 2014).
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Phylogenetic relationships and divergence 
time estimation

We inferred mtDNA relationships and divergence 
times within H. andersonii using BEAST v.1.10.1 
(Suchard et  al. , 2018). Additional taxa were 
downloaded from GenBank (Supporting Information, 
Table S1) and included as outgroups. Given that fossil 
calibrations were unavailable within H. andersonii, 
we used a substitution rate estimate for ND2 (0.00957 
mutations per lineage per million years; Macey et al., 
1998; Crawford, 2003). We partitioned the dataset by 
gene and linked tree models. After preliminary runs 
to test different prior settings, we chose a strict clock, 
HKY site models, and a coalescent constant tree prior 
for the full Markov chain Monte Carlo run of 50 million 
generations, sampling every 5000 generations. We 
verified that all parameters had reached adequate 
effective sample sizes (> 200) using Tracer v.1.7.1 
(Rambaut et al., 2018), discarded the first 10% of 
trees as burn-in, and summarized samples using 
TreeAnnotator.

For comparison with mtDNA relationships, we 
used anchored loci to infer nuclear phylogenetic 
relationships with two coalescent-based species tree 
methods, SVDQuartets (Chifman & Kubatko, 2014, 
2015) and ASTRAL v.5.4.5 (Mirarab et al., 2014; Mirarab 
& Warnow, 2015). SVDQuartets uses algebraic 
statistical techniques to infer quartet relationships 
from multi-locus sequence data, assuming each 
locus has its own genealogy under the multispecies 
coalescent model. We ran SVDquartets in PAUP* 
v.4.0a157 (Swofford, 2002), with two alleles assigned to 
each individual, exhaustive quartet sampling and 100 
bootstrap replicates. The second method, ASTRAL, 
summarizes over gene trees to infer an unrooted 
species tree that maximizes the number of quartets 
shared across the gene and species trees. We estimated 
gene trees for each nuclear locus using RAxML v.8 
(Stamatakis, 2014), phased alleles, the GTR+G model, 
and rapid bootstrapping with 100 replicates. We then 
used the best trees as input for ASTRAL, mapping 
alleles to each individual, and conducting multi-locus 
bootstrapping with the RAxML bootstrap trees and 
100 replicates. Branches with bootstrap support <70 
were collapsed using TreeGraph v. 2.14.0 (Stöver & 
Müller, 2010).

Testing for north-eastern expansion and 
mitochondrial DNA ancestral location

To evaluate the direction of colonization within 
H.  andersonii , we tested predict ions using 
PhyloMapper v.1.0 (Lemmon & Lemmon, 2008). 
This approach uses a spatially explicit random walk 
model of migration to estimate the geographical 
location of an ancestor, dispersal rate and migration 

direction, given a set of georeferenced taxa and their 
phylogenetic relationships. PhyloMapper requires a 
resolved genealogy and clades with at least five tips 
to conduct tests; thus, we inferred the mtDNA history 
for well-sampled clades within H. andersonii (see 
Results). We tested the predictions that: (1) recently 
expanded lineages (NJ or CL + NJ, hereafter Atlantic) 
would have higher dispersal than lineages that have 
not expanded (AF); (2) the geographical centre of 
present-day samples for expanded lineages would be 
north-east relative to the maximum likelihood (ML) 
estimate of the ancestral centre of origin; and (3) the 
direction of migration for expanded lineages would be 
non-random and to the north-east.

Initially, we tested for phylogeographical association 
within each clade using randomization tests to 
compare the ML dispersal estimate with a null 
distribution. We generated null distributions by 
randomizing geographical coordinates across the 
tips of the phylogeny 10 000 times, estimated the 
dispersal parameters, and calculated P-values as the 
proportion of samples from the null that were lower 
than the original ML dispersal estimate. We then used 
a likelihood ratio test (LRT) to compare models with 
different numbers of dispersal rates: either a single 
dispersal rate for the whole species, or two dispersal 
rates (AF vs. Atlantic). A significantly higher dispersal 
rate for the Atlantic clade would support expansion 
(prediction 1).

After estimating the ML ancestral location for 
each clade, we conducted LRTs to determine whether 
these were significantly different from the centre of 
sampled locations. We calculated the mean coordinates 
of sampled individuals (Fig. 1) in QGIS v.2.18.2 and 
compared the likelihood when the central location 
was constrained to this point to the likelihood from 
the unconstrained (ML) ancestral location. We also 
assessed uncertainty in the ancestral location by 
estimating the location from 1000 random trees 
sampled from the posterior. A difference between the 
geographical centre and ancestral location would 
suggest expansion (prediction 2).

Finally, we tested whether the inferred direction 
of migration was non-random or in the predicted 
direction (north-east) for clades of interest (prediction 
3). PhyloMapper includes a set of standard directions 
(east, north-east, west, south-west, etc.) as decimal 
values in radians between zero and 2π. North-east 
is 45° or π/4. We generated null distributions by 
randomizing the geographical coordinates of the tips 
10 000 times, computed the expected net dispersal 
as the average change in location from ancestor to 
descendant (random direction test), and computed the 
average of all angles between ancestor–descendant 
arrows and the predicted direction (north-east; a priori 
direction test). We also generated a graph to visualize 
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directional tendency by repeating the a priori test with 
different predicted migration directions from zero to 
2π radians. The P-value for each direction is depicted 
as a line in a circle, with longer lines representing 
smaller P-values. Additional details are provided by 
Lemmon & Lemmon (2008).

Testing models of multiple refugia and 
colonization history

We used the R package ‘delimitR’ (Smith & Carstens, 
2020) to test phylogeographical models with the genomic 
SNP dataset. This approach conducts demographic 
model selection by summarizing SNP data using the 
site frequency spectrum (SFS) and comparing models 
with machine learning. We designed a custom model 
set to test our predictions for H. andersonii, specifically, 
whether populations survived in one, two or three refugia 
during the Pleistocene (Fig. 2). Model 1 included a single 
Pleistocene refugium (AF), with colonization of CL and 
NJ occurring during the Holocene. Model 2 included 
two refugia, AF and CL, with the colonization of NJ 
occurring during the Holocene. Models 3 and 4 included 
three Pleistocene refugia, with model 4 considering 
the potential for gene flow during the initial stages of 
divergence between the CL and NJ populations.

Population sizes were drawn from uniform priors 
(1000, 100 000 individuals) for all models. For models 
including post-Pleistocene colonization (models 1 
and 2), colonization times were drawn from uniform 
priors (1000, 10 000 generations before the present), 
and the proportion of the population remaining during 
the bottleneck was drawn from a uniform prior (0.1, 
1.0). Bottlenecks began 500 years before colonization 
(looking backward in time). Divergence times 
between refugial populations were drawn from broad 
uniform priors (20 000, 5 000 000 generations), and 
we restricted divergence and colonization times such 
that the topologies of the models did not change. For 

the model including secondary contact between the 
CL and NJ populations, migration rates were drawn 
from a uniform prior (5 × 10−6, 5 × 10−5), and migration 
began halfway between the present and the time 
of divergence between the two populations (looking 
backward in time).

We used custom python scripts (available at 
https://github.com/meganlsmith) to construct a 
multidimensional site frequency spectrum (mSFS) 
from our empirical data. We simulated 10 000 datasets 
under each model using the fastsimcoalsims function in 
‘delimitR’, which uses fastsimcoal v.2.6 (Excoffier et al., 
2013) to simulate SFS under the specified model. Next, 
we binned the mSFS using four classes, and constructed 
a random forest (RF) classifier from the simulated data 
using 500 decision trees. We calculated error rates based 
on out-of-bag errors, and then applied the RF classifier to 
our observed data and selected the best model according 
to the number of votes or decision trees out of 500 that 
agreed with that model. We then approximated the 
posterior probability of the best model using the RF_
predict_abcrf function in ‘delimitR’, which follows the 
approach described by Pudlo et al. (2016).

Species distribution modelling

To estimate the historical distribution independently 
and identify potential refugia within H. andersonii, 
we generated SDMs in MaxEnt v.3.3.3 (Phillips et al., 
2006). We downloaded 19 bioclimatic variables from 
WorldClim v.1.4 (Hijmans et al., 2005), representing 
four time points: current (averaged from 1950 to 
2000), Holocene (~0.006 Mya), Last Glacial Maximum 
(LGM; ~0.022  Mya) and Last Interglacial (LIG; 
~0.12–0.14 Mya). Historical data included changes 
to the coastline. We removed significantly correlated 
climate layers (r2 > 0.8; Sheppard, 2013) and retained 
nine variables describing aspects of temperature and 
precipitation (Supporting Information, Table S3).

Figure 2.  Models compared in delimitR. Abbreviations: a1, ancestral population size at Tdiv1; a2, ancestral population size 
at Tdiv2; AF, Alabama/Florida; CL, North and South Carolina; N, population size; NJ, New Jersey; prop, proportion of the 
population remaining after the bottleneck; Tcol, time of recent colonization with a bottleneck; Tdiv, divergence time between 
populations; Tme, time of migration ending.
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We obtained locality records for H. andersonii from 
various sources (museums, state databases, personal and 
published field records; Supporting Information, Table S4; 
Fig. S1), excluding the only two records before 1950. To 
avoid sampling bias, we thinned localities for each region 
with a filtering distance of 5 km and 100 replicates using 
the R package ‘spThin’ (Aiello-Lammens et al., 2015). 
To generate background points relevant to the disjunct 
distribution of H. andersonii, we selected random localities 
within a 400 km buffer of the sampling localities, clipped to 
land borders (Supporting Information, Fig. S2). In MaxEnt, 
we tested multiple values of the regularization multiplier 
(R = 1, 2.5 and 5) and compared the resulting area under 
the curve (AUC) values. For the final models, we used 
R = 1, a random set of 25% testing data and 100 bootstrap 
replicates. We calculated the 95% lowest presence threshold 
(LPT95; Pearson et al., 2007) using custom R scripts that 
averaged the probability at which 95% of testing localities 
were included across bootstrap replicates. Based on the 
LPT95 value, we visualized binary presence-only models 
and rescaled probability models.

RESULTS

Data summary

We sequenced a total of 241 million reads across all 
28 individuals (~8.6 million reads on average per 
individual), from which mtDNA genomes and anchored 
loci were assembled. The mtDNA genome alignment 
consisted of 15 457 bp with 2.14% missing data, 
430 (2.8%) variable sites and 315 (2.0%) parsimony-
informative sites. Reads were assembled into an 
average of 804 anchored loci (±57) per individual. After 
aligning and filtering, we retained 458 nuclear loci for 
species tree analyses, which included 2.3% missing 
data, a total of 628 954 bp, 12 444 (2.0%) variable 
sites and 9157 (1.5%) parsimony-informative sites. 
Loci were retained only when ≥ 24 of 28 individuals 
had data, even if the data were partial. Of the 458 
loci retained, 319 loci had all 28 individuals, and 
the remaining 139 had varying numbers of missing 
individuals. The average anchored locus length was 
1375 bp (range: 146–2617 bp). The SNP dataset for 
H. andersonii included 609 loci, with a total of 6428 
SNPs. Genetic diversity estimates were highest for 
the CL region and lowest for NJ (Table 1).

Phylogenetic relationships and divergence 
times

Phylogenetic relationships based on mtDNA genomes 
and nuclear anchored loci were similar and were highly 
congruent with geography (Fig. 3). The AF samples 
formed a clade and diverged from the rest of the range 

~0.93 Mya [95% highest posterior density (HPD): 
0.80–1.05 Mya]. The Atlantic clade comprised the 
remaining individuals, within which diversification 
began ~0.54 Mya (95% HPD: 0.45–0.62 Mya). The NJ 
samples formed a clade and were the most recently 
diverged, at ~0.15 Mya (95% HPD: 0.12–0.18 Mya). 
The relationships of the CL samples were less certain. 
In both species tree analyses, the South Carolina (SC) 
samples formed a clade, but with unclear placement 
relative to the North Carolina samples. In the mtDNA 
analysis, three SC samples formed a clade that 
diverged from the remaining Atlantic samples.

Signatures of north-eastern expansion

We found significant phylogeographical association 
within H. andersonii and each clade with at least five 
tips (Table 2). As predicted, the Atlantic clade had the 
highest dispersal distance, and this was significantly 
higher than the AF clade based on an LRT (Table 3). 
The dispersal distance for the Atlantic clade (318.5 m) 
was approximately four times larger than that for the 
AF clade (81.5 m). The geographical centre of present-
day samples (central location) shifted in the expected 
direction (north-east) for the entire species and for the 
Atlantic clade, but neither was significantly different 
from the unconstrained ML estimates of each ancestral 
location (Supporting Information, Table S5; Fig. 4). The 
NJ and AF central locations overlapped with the ML 
estimates. Uncertainty in the ancestral estimates was 
relatively low for each clade, as indicated by the tight 
clustering of points around the ML estimate (Fig. 4).  
The direction of migration was significantly non-
random for the AF and Atlantic clades, and the a priori 
direction test indicated north-eastern migration for 
the AF, Atlantic and NJ clades. Finally, the directional 
tendency of migration visualized for the Atlantic clade 
was towards the north-east, as predicted (Fig. 4).

Table 1.  Genetic diversity estimates for each region based 
on single nucleotide polymorphism datasets including 21 
individuals

Dataset All SNPs, 609 loci  
(6428 SNPs)

Random SNPs, 
609 loci  
(609 SNPs)

Region He AR He AR

AF 0.1936 1.530 0.1790 1.482
CL 0.2455 1.690 0.2281 1.654
NJ 0.1413 1.395 0.1183 1.327

Abbreviations: AF,  Alabama/Florida; AR,  allelic richness; CL,  North 
and South Carolina; He, expected heterozygosity; NJ, New Jersey; SNP, 
single nucleotide polymorphism.
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Multiple lines of evidence for multiple 
refugia

The best model (model 2; posterior probability = 0.836) 
using ‘delimitR’ and the SNP dataset supported 
the existence of two refugia (AF and CL), with post-
Pleistocene colonization of NJ. Models 3 and 4 received 
13 and nine of the 500 decision tree votes, respectively, 
suggesting very little support for a three-refugia 
model. Model 2 received 307 of 500 of the decision 
tree votes, and model 1 received 171 votes. The overall 
error rate in ‘delimitR’ was 14.21%, and all models 
except model 3 (three refugia, with no gene flow) had 
error rates < 6% (Table 4). Model 3 was often (~50% 
of the time) misclassified as model 4. We suspect 
that this misclassification is a function of difficulties 
in distinguishing between a model with more recent 
divergence times in comparison to a model with more 
ancient divergence times but including migration.

Species distribution models using climate data also 
provided support for multiple refugia (Fig. 5; Supporting 
Information, Figs S3, S4). MaxEnt models were generated 
with a thinned set of 260 localities (61 AF, 73 CL and 
126 NJ; Supporting Information, Fig. S1). The average 
AUC was 0.977, and the variable that contributed most 
to model fit was the mean temperature of the wettest 
quarter (Bio8; 45.2%; Supporting Information, Table 
S3). The current model included high suitability for the 
known range and indicated suitable climate in two areas 
within the NACP where the species does not occur at 
present, Louisiana (LA) and the Delmarva peninsula 
(Fig. 5A). During each of three historical time points, 
multiple disjunct regions were predicted to include 
suitable climate for H. andersonii. The Holocene, LGM 
and LIG models indicated that the CL region was a stable 
refugium for the species, and they also predicted suitable 
areas in LA, which is west of the current range on the 

Figure 3.  Phylogenetic relationships within Hyla andersonii inferred from mtDNA genomes (A) and 458 nuclear loci (B). 
A, divergence times were estimated in BEAST using a mutation rate for ND2. Bars represent the 95% highest posterior 
density interval for node age, with the x-axis representing millions of years ago. Branch labels are posterior probabilities. 
B, species trees from SVDQuartets, with bootstrap support (above branch) and ASTRAL bootstrap support values (below 
branch). Branches with support < 70 were collapsed using TreeGraph v.2.14.0 (Stöver & Müller, 2010). Abbreviations: 
AF, Alabama/Florida; NC, North Carolina; NJ, New Jersey; SC, South Carolina. 
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Gulf Coast (Fig. 5B–D). The Holocene and LGM models 
showed no suitable areas on the northern Atlantic coast 
(Fig. 5B, C), whereas the LIG model indicated suitable 
areas in New England, which is north of the current 
range (Fig. 5D).

DISCUSSION

Here, we tested predictions regarding the evolutionary 
history of H. andersonii using large-scale genomic 
and climate data. First, both nuclear species tree 
and mtDNA analyses confirmed the existence of two 

major clades, AF and Atlantic (containing CL and NJ 
individuals), with an estimated mtDNA divergence 
time between them of ~0.9 Mya. NJ also formed a clade, 
diverging ~0.15 Mya from the CL individuals. Second, 
our results are consistent with predictions of multiple 
refugia and north-eastern expansion along the 
Atlantic coast. We found the largest dispersal distance 
in the Atlantic clade, a significant north-eastern 
dispersal direction, the lowest genetic diversity in NJ, 
and support for a model with two refugia and recent 
colonization of NJ. Finally, the current SDM closely 
matched the known species range, and three historical 
models predicted disjunct areas of suitability. The 
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Figure 4.  PhyloMapper results, including the geographical locations of clade ancestors (A) and the directional tendency of 
migration (inkblot plots; B). The nuclear phylogeny is also shown in A. Abbreviations: AF, Alabama/Florida; CL, Carolinas; 
ML, maximum likelihood; NJ, New Jersey; SC, South Carolina. In A, the North American Coastal Plain is indicated on the 
map in grey. Stars represent the ML estimates of ancestral location for each clade. Small circles represent uncertainty in the 
ancestral location. Larger circles (labelled ‘C’) are the central locations. The NJ (blue) and AF (red) central locations overlap 
with the ML estimates. The inner circle around the inkblot is P = 0.1 and outer circle P = 0.05.
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CL region was probably a stable refugium, given 
its predicted suitability in all SDMs, and areas in 
the eastern Gulf Coast region outside the current 
range were also consistently predicted as suitable. 
Overall, this comprehensive phylogeographical study 
demonstrates a long history of range fragmentation 
within an endemic NACP species and highlights the 
influence of historical climate change on the current 
distribution of species and their genetic diversity.

Multiple refugia and north-eastern expansion

Using several lines of congruent evidence, we 
confirmed that H. andersonii populations in disjunct 
regions have probably been isolated for hundreds 
of thousands of years. Previous estimates from one 
or two localities per region left uncertainty in the 
mtDNA divergence times between the Atlantic and 
AF clades (~3 Mya, Lemmon et al., 2007; ~0.46 Mya, 
Oswald et al., 2020), which we clarified here (95% 
HPD: 0.80–1.05 Mya). Our SDM results support 
the proposal by Noss et  al. (2015) that climatic 
variation and natural fragmentation generated by 
fluctuating sea levels have contributed to divergence 
and high endemism in the NACP. Historical SDMs 
ranging from ~6000 to 140 000 years ago predicted 
disjunct areas of suitability for H. andersonii across 
the Gulf and Atlantic coasts, and the best delimitR 
model supported two refugia. Plant species with 
similar distributions, such as Atlantic white cedar 
(Chamaecyparis thyoides) and Sarracenia pitcher 
plants, also exhibit genetic divergences between 
disjunct populations (Mylecraine et al., 2004; Stephens 
et al., 2015), the latter of which has divergence date 
estimates similar to H. andersonii (~1.1–1.3 Mya; 
Ellison et al., 2012). Few vertebrate species in the 
NACP, however, have such a high degree of range 
disjunction as H. andersonii (Newman & Austin, 
2019), perhaps as a result of these historical periods 
of fragmentation, in addition to its habitat specificity. 
In contrast, pine snakes (Pituophis melanoleucus), 
for example, have a similar disjunction between the 
Carolinas and New Jersey, yet are fairly continuous 
between Florida and the Carolinas (Means, 2006). 

Quantitative tests in PhyloMapper supported 
the prediction of north-eastern expansion. Dispersal 
estimates within the northern clade were larger 
than AF, which is consistent with north-eastward 
invasion (Lemmon & Lemmon, 2008). The per-
generation dispersal distance estimates ranged from 
~70 to 320 m, which was reasonable compared with 
the single study that estimated dispersal in one NJ 
population (0–20  m daily movements, 40–100  m 
distance from breeding ponds; (Freda & Gonzalez, 
1986). In addition, larger-bodied animals are expected 
to show greater dispersal abilities (Paz et al., 2015). T
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(a) Current

(b) Holocene

(c) LGM

(d) LIG
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Figure 5.  Predicted suitability at the 95% lowest presence 
threshold for each time period (LGM,  Last Glacial 

Consistent with this prediction, NJ individuals were 
significantly larger in snout–vent length than those in 
the other two regions (mean = 3.65 cm; ~0.1 cm larger 
on average; ANOVA, d.f. = 2, F = 20.4995, P < 0.001; 
Warwick et al., 2015, with additional unpublished 
data from AR Warwick; Supporting Information, Fig. 
S5). Post-glacial northern expansion in this region has 
also been inferred for other anuran species: Pseudacris 
crucifer (Austin et al., 2002), Pseudacris feriarum 
(Lemmon & Lemmon, 2008), Hyla cinerea and Rana 
sphenocephala (Barrow et al., 2017), demonstrating a 
similar influence of climate on species ranges.

Future directions

Spatially explicit and model-based methods are 
important tools that have added rigour for inference 
in phylogeography, but some limitations should be 
addressed (Bradburd & Ralph, 2019; Mable, 2019). 
First, PhyloMapper does not currently take into 
account landscape information when estimating 
movement direction and ancestral areas. This issue 
might be most problematic when generating null 
distributions, because random movement in all 
directions, such as towards the ocean, is not realistic. 
Second, our PhyloMapper analyses only infer 
mtDNA genome history because resolved gene trees 
are needed; thus, our inferences might not reflect 
the entire species history. Although delimitR enables 
analysis of massive SNP datasets, we analysed ~600 
SNPs to minimize missing data and avoid violating 
the assumption of independence among loci. We also 
designed models to test our specific predictions rather 
than exploring a large portion of model space that 
might not correspond to biologically realistic scenarios 
for the species under study. Future analyses using 
more SNPs could allow additional, more detailed 
models of gene flow and population size to provide 
further insights in this system.

In the current SDM, areas of suitability were 
generally consistent with the species distribution, 
with two discrepancies within the NACP, the 
Delmarva peninsula and Louisiana, where the 

Maximum; LIG, Last Interglacial), with predicted presence 
in each region summarized in boxes (AF, Alabama/Florida; 
CL, North and South Carolina; NJ, New Jersey). Louisiana 
(LA) is outside the current range but consistent across 
all models. Warm colours indicate higher suitability for 
Hyla andersonii occurrence. The Fall Line is indicated, 
which represents the northern boundary of the North 
American Coastal Plain physiographical region. Only the 
contemporary coastline is shown across all time periods, 
although climate data included relevant changes in 
coastline.
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current absence of H. andersonii might be explained 
by human effects, such as land use. The Delmarva is 
located between CL and NJ, and thus it is plausible 
that H. andersonii might have inhabited the area 
previously and has since been extirpated, but we are 
unaware of any historical records from this region. 
Interestingly, the predicted species distribution of 
H. andersonii under the current climate matches 
closely with the known distribution of Atlantic 
white cedar (Supporting Information, Fig. S6; 
Little, 1971), including the same area within the 
Delmarva. Future modelling could test the influence 
of other environmental and landscape data layers 
(e.g. vegetation, soil, fire frequency; (Pekin et al., 
2012; Laliberté et al., 2013), although hindcasting 
SDMs was only possible using climate in this study. 
The historical climate data were also limited to 
three time points; thus, we lacked finer resolution 
during climate conditions that aligned with mtDNA 
divergence estimates. It is possible that suitable 
habitat might have occurred in the intervening 
times and served as a corridor for movement. Finally, 
we acknowledge that when modelling any species 
distribution with palaeoclimatic data we assume 
the species climate envelope has not changed over 
time (Richards et  al., 2007). Given the habitat 
specialization of H. andersonii, this assumption 
might be reasonable.

Conclusions

We found evidence that H. andersonii has existed in 
disjunct regions for much of its evolutionary history. 
Given its habitat specialization and the continued 
loss and degradation of wetland habitat (Moler et al., 
2020; Oswald et al., 2020), however, it might be more 
difficult for this species to track climate shifts and 
persist into the future. In addition, the relatively 
deep divergence between the AF and Atlantic clades 
indicates that these areas should be managed 
separately. Although we do not propose taxonomic 
changes to H. andersonii, particularly given the 
concordance of behavioural and morphometric data 
across regions (Warwick et al., 2015), our results 
show that the AF and Atlantic clades represent 
distinct evolutionary histories, with little to no 
recent gene flow. Management efforts within regions 
would benefit from higher-resolution, population-
level estimates of genetic diversity. In addition, the 
inability to detect the species from historical localities 
in recent surveys, especially in CL (Warwick et al., 
2015), is of concern, because CL shows the highest 
genetic diversity. Although the current populations 
appear stable in Florida (Moler et al., 2020), the 
species is only found actively in four counties in 

AF (one in Alabama and three in Florida) and was 
recently delisted in Florida. Future management 
efforts of this species should be considered to secure 
the AF clade, given its distinct evolutionary history 
from the Atlantic populations. Taken together, 
our comprehensive dataset and inferences from 
genomic and climatic data have uncovered the 
complex history of a uniquely fragmented habitat 
specialist in this important area for biodiversity and 
phylogeographical discovery.
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Table S1. Specimens used for genomic data collection.
Table S2. GenBank accession numbers for Hyla femoralis genes used to construct a reference mitochondrial 
genome for assembly in SeqMan NGEN.
Table S3. All 19 bioclimatic layers used for species distribution models.
Table S4. All Hyla andersonii locality sources by state used as input for species distribution models.
Table S5. Likelihood ratio tests for geographical location.
Figure S1. All Hyla andersonii occurrence localities that were thinned to 5 km nearest-neighbour distances and 
used as input for MaxEnt species distribution models.
Figure S2. The distribution of background localities used in MaxEnt, which was generated using a 400 km 
radius around all occurrence records.
Figure S3. Species distribution models for each time point using all 19 climatic variables. The raw output from 
MaxEnt is shown.
Figure S4. Species distribution models for all four time points as binary outputs.
Figure S5. Range of snout–vent lengths (in centimetres) for males only from each of the three regions.
Figure S6. The species distribution model for Hyla andersonii in current climatic conditions compared with the 
known distribution of Atlantic white cedar (Chamaecyparis thyoides).
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