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The Pacific Northwest of North America contains two disjunct temperate rainforests, one in the Coastal and Cascades 
Ranges and another in the Northern Rocky Mountains. These rainforests harbour > 200 disjunct and endemic taxa, 
with coastal and inland populations separated by the Columbia Basin. For several taxa, molecular data have revealed 
cryptic diversity structured across the Columbia Basin. Here, we use information from previously studied taxa and 
a machine-learning framework to predict that tail-dropper slugs in the genus Prophysaon (Prophysaon andersoni, 
Prophysaon coeruleum, Prophysaon dubium and the Prophysaon vanattae/Prophysaon humile complex) should lack 
cryptic diversity. This prediction is supported by results from species distribution models (SDMs), which suggest that 
all taxa lacked suitable habitat in the inland rainforests during the Last Glacial Maximum. We collected COI data 
and tested these predictions using approximate Bayesian computation and found that models of recent dispersal 
between inland and coastal populations received strong support. Finally, we used posterior predictive simulations to 
show that the best model was a reasonable fit to the data for all taxa. Our study highlights the utility of predictive 
modelling in a comparative phylogeographical framework and illustrates how posterior assessments of model fit can 
improve confidence in model-based phylogeographical analysis.

ADDITIONAL KEYWORDS: approximate Bayesian computation – cryptic diversity – phylogeography – posterior 
predictive simulations.

INTRODUCTION

The Pacific Northwest of North America (PNW) 
supports two disjunct temperate rain forests, namely 
the Cascades and Coastal ranges in the west and the 
Northern Rocky Mountains in the east (Fig. 1). The 
inland and coastal rainforests were continuous before 
the orogeny of the Cascades range (2–5 Mya; Graham, 
1999), when the elevation of the Cascades produced a 
rain shadow that led to the xerification of the Columbia 
Basin. This basin is now characterized by a shrub-
steppe ecosystem and effectively separates inland 

and coastal rainforests by > 200 km of habitat that is 
unsuitable for rainforest endemic species. The isolation 
of these two rainforests is somewhat diminished to the 
south by the Central Oregon highlands and by the 
Okanogan highlands in the north, but the basin has 
still acted as a barrier to dispersal for several rainforest 
endemics (Carstens et al., 2005). In addition to the 
orogeny of the Cascades in the Pliocene, Pleistocene 
climatic fluctuations have influenced the distributions 
of rainforest endemics in the PNW (Pielou, 2008). 
Specifically, glaciers intermittently covered large 
parts of species’ contemporary ranges, and rainforest 
endemics may have been eliminated from northern 
parts of their ranges completely or may have survived 
in isolated refugia (Brunsfeld & Sullivan, 2005).  *Corresponding author. E-mail: megansmth67@gmail.com
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Several species with this disjunct distribution also 
have populations in the Blue and Wallowa Mountains 
of southeastern Washington and northeastern Oregon. 
Some studies have found that these populations are 
closely related to populations in the Northern Rockies 
(Nielson, Lohman & Sullivan, 2001), whereas in other 
species, such as the polydesmid millipede Chonaphe 
armata (Harger, 1872; Espíndola et al., 2016) and 
Prophysaon vanattae (Pilsbry, 1948), populations in 
the Blue or Wallowa Mountains are phenotypically 
more similar to populations in the Cascades.

This compelling geological history has inspired 
a great deal of phylogeographical work, with 
several hypotheses proposed to explain the disjunct 
distributions of mesic forest endemics (reviewed by  

Brunsfeld et al., 2001). The ‘ancient vicariance’ 
hypothesis posits that populations survived in 
both inland and coastal rainforests throughout the 
Pleistocene climatic fluctuations and that no gene flow 
has occurred between inland and coastal populations 
since the Pliocene. A variation on this hypothesis 
considered by Espíndola et al. (2016) posits pre-
Pleistocene divergence between inland and coastal 
populations but allows for subsequent intermittent 
gene flow between inland and coastal populations 
along ephemeral habitat corridors at the margins 
of retreating glaciers. Another class of hypotheses 
reviewed by Brunsfeld et al. (2001), referred to as 
‘recent dispersal’ hypotheses, posits that either inland 
or on the coast, no populations survived Pleistocene 

Figure 1. Phylogeographical models compared in the present study. Abbreviations: m12, migration from population 1 into 
population 2; NC, North Cascades; NRM, Northern Rocky Mountains; SC, South Cascades; τdiv, divergence time. The grey 
areas on the map mark the distribution of Prophysaon coeruleum, adapted from Burke (2013). Black lines indicate northern 
and southern dispersal routes.
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climate fluctuations. These models predict post-
Pleistocene divergence with subsequent dispersal 
either from coastal to inland or from inland to coastal 
populations. These models have received mixed 
support; data from several amphibian species suggest 
Pliocene divergence between inland and coastal 
populations and support the ancient vicariance model 
(Nielson et al., 2001; Carstens et al., 2004; Steele et al., 
2005), whereas data from dusky willows and robust 
lancetooth snails support a model of recent dispersal 
from coastal to inland rainforests (Carstens et al., 
2013; Smith et al., 2017), and data from red alder 
support a more nuanced model of ancient vicariance, 
with intermittent gene flow in one or both directions 
(Ruffley et al., 2018).

The ancient vicariance hypothesis predicts the 
presence of cryptic diversity structured across the 
Columbia Basin, owing to deep divergence between 
inland and coastal populations, and some species (e.g. 
the tailed frog, Ascaphus montanus; Nielson et al., 2001) 
have been recognized after genetic data were collected 
to test this hypothesis. Recently, Espíndola et al. (2016) 
developed an approach to predict the presence or absence 
of such cryptic diversity that uses a machine-learning 
algorithm and genetic, taxonomic and environmental 
data from previously studied taxa to construct a 
classifier that attempts to predict the presence or 
absence of cryptic diversity in unsampled species. This 
method allows researchers to make predictions about 
which unstudied taxa are likely to harbour cryptic 
diversity, and may prove useful when limited resources 
force researchers to focus on only one or a few taxa. 
As part of the ongoing evaluation of this predictive 
framework for phylogeography, we apply random forest 
(RF) classification to terrestrial slugs endemic to the 
PNW and test the resulting predictions using species 
distribution models (SDMs) and genetic data.

MATERIAL AND METHODS

Study SyStem and Sampling

Slugs of the genus Prophysaon are endemic to the 
mesic forests of the PNW, with several species 
exhibiting the characteristic mesic forest disjunct 
distribution on either side of the Columbia Basin. 
Here, we focus on three disjunct species: Prophysaon 
andersoni (J.G. Cooper, 1872), Prophysaon coeruleum 
(Cockerell, 1890) and Prophysaon dubium (Cockerell, 
1890). Additionally, we include two sister species: 
Prophysaon vanattae (Pilsbry, 1948) and Prophysaon 
humile (Cockerell, 1948). Prophysaon vanattae occurs 
only in the Cascades, whereas P. humile is endemic 
to the inland rainforest. Prophysaon vanattae and 
P. humile were classified as belonging to the subgenus 

Mimetarion (Pilsbry, 1948), along with Prophysaon 
obscurum (Cockerell, 1893) and Prophysaon fasciatum 
(Cockerell, 1890). Prophysaon fasciatum does not 
seem to be a distinct species (Pilsbry & Vanatta, 
1898), and P. obscurum (Cockerell, 1893) is a narrow 
endemic found only south of the South Puget Sound 
and into western Washington and in the Columbia 
Gorge along the Washington–Oregon border (Burke, 
2013). Molecular data indicate that P. obscurum is not 
distinct from P. vanattae (see Supporting Information: 
Gene Tree of this article; Wilke & Duncan, 2004), 
suggesting that it is appropriate to consider P. vanattae 
and P. humile as sister taxa that diverged across the 
Columbia Basin. Although this may seem to suggest 
deep divergence between the inland and coastal 
sister taxa, we chose to include these taxa in the 
present study because there has been no study of the 
genetic divergence between these two taxa, and it is 
unknown whether the phenotypic divergence used to 
delineate the two species corresponds to deep genetic 
divergence. We collected 223 samples from throughout 
the ranges of the focal taxa and other species of 
Prophysaon [Prophysaon foliolatum (Gould, 1851) and 
P. obscurum] from field collections and from museums 
(Fig. 2; Supporting Information, Table S1). Sites were 
visited during the autumn of 2016, and slugs were 
stored in 95% ethanol immediately after collection. 
Additional samples were requested from museum 
collections (Carnegie Museum of Natural History, 
Royal British Columbia Museum and the California 
Academy of Sciences).

predicting cryptic diverSity

We applied the approach developed by Espíndola 
et al. (2016) to predict whether the focal taxa harbour 
cryptic diversity structured across the Columbia 
Basin. Specifically, we trained an RF classification 
function on a set of taxa that had already been 
studied [the water vole Microtus richardsoni (J.E. 
Dekay, 1842), the tree Salix melanopsis (Nutt), the 
millipede C. armata, the frog Ascaphus montanus/
truei, the salamander Dicamptodon atterimus/copei 
(Cope, 1867; Nussbaum, 1970) and the salamander 
Plethodon idahoensis/vandykei (Slater & Slipp, 
1940; Van Denburgh, 1906)]. These reference taxa 
were classified as ‘cryptic’ or ‘non-cryptic’ based on 
genetic data provided by Espíndola et al. (2016), where 
‘cryptic’ species had cryptic diversity structured across 
the Columbia Basin, and non-cryptic species did not. 
In addition to the data used by Espíndola et al. (2016) 
to train their predictive function, we included data 
from Haplotrema vancouverense (I. Lea, 1839), a snail 
endemic to the PNW for which genomic data have 
demonstrated a lack of cryptic diversity structured 
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Figure 2. The distributions of all Prophysaon species considered in the present study, adapted from Burke (2013), with 
collection localities from the present study. Coastal ranges are shown in blue, inland ranges in green, and Blue and Wallowa 
ranges in purple. A, Prophysaon andersoni. B, Prophysaon foliolatum. C, Prophysaon dubium. D, Prophysaon coeruleum. E, 
Prophysaon vanattae. F, Prophysaon humile. G, Prophysaon obscurum. H, map showing context for maps B–G.
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across the Columbia Basin (Smith et al., 2017). We 
included this taxon because it is more closely related 
to Prophysaon than other species in the training 
set, and thus should improve the performance of the 
predictive function for the focal taxa. The occurrence 
data detailed by Espíndola et al. (2016) were also used 
here to extract eight environmental variables from the 
WorldClim database (Hijmans et al., 2005): annual 
mean temperature, mean diurnal range, isothermality, 
maximum temperature of warmest month, temperature 
annual range, annual precipitation, precipitation 
seasonality and precipitation of driest quarter. In 
addition to environmental data, we used taxonomic 
information to train the classifier. Specifically, we 
classified each taxon as mollusc, arthropod, mammal, 
amphibian or plant. These broad taxonomic categories 
are intended to serve as a proxy for life-history 
characteristics that may influence traits such as 
dispersal ability. The dataset from Espíndola et al. 
(2016) combined with the data from H. vancouverense 
was used to train an RF classifier using the R package 
‘randomForest’ (Liaw & Wiener, 2002). We used the 
same down-sampling strategy described by Espíndola 
et al. (2016) to account for differences in the number 
of cryptic and non-cryptic observations with 100 
down-sampled replicates. We assessed the accuracy 
of these classifiers using cross-validation, where one 
taxon was omitted when building the RF classifier. 
The classifier was then applied to the omitted taxon, 
and the probability that the omitted taxon harboured 
or lacked cryptic diversity was calculated. We then 
applied the classifier to the four Prophysaon taxa with 
disjunct distributions and estimated the probability 
of each taxon harbouring or lacking cryptic diversity. 
Occurrence points for Prophysaon were from this 
study only, as the identification of occurrence data 
from data aggregators (e.g. the Global Biodiversity 
Information Facility, GBIF) could not be verified, and 
misidentifications are common in this group. Climate 
data were downloaded from WorldClim for these 
occurrence points for the eight bioclimatic variables 
listed above at a resolution of 30 arc s (Hijmans et al., 
2005). To evaluate the importance of the taxonomic 
predictors in driving the classifier, we also constructed 
and applied a classifier using no taxonomic variables 
and using a different set of classifications (Supporting 
Information: Random Forest Predictions) to evaluate 
the effects of including taxonomy in the classifier.

SpecieS diStribution modelS

In addition to the RF classifier, SDMs may help to 
predict whether taxa will harbour cryptic diversity 
structured across the Columbia Basin. Specifically 
in the PNW, where the presence or absence of cryptic 

diversity is largely driven by the persistence of habitat 
through the Pleistocene glacial cycles, hindcast SDMs 
can be a powerful tool for predicting the presence of 
cryptic diversity (Richards, Carstens & Knowles, 2007). 
If no suitable habitat is predicted in the Northern Rocky 
Mountains during the LGM (assuming accurate SDMs 
and palaeoclimate reconstructions), the focal taxa are 
likely to have colonized the inland after glaciation, 
and we would not expect cryptic diversity across the 
Columbia Basin. On the contrary, if suitable habitat 
persisted in the inland rainforests during the LGM, 
there may have been refugia present at that time, and 
deep genetic divergence might exist between inland and 
coastal populations.

We built SDMs using the ensemble method 
implemented in the R package ‘biomod2’ (Thuiller, 
Georges & Engler, 2014) and the ten modelling 
approaches available in the package (Supporting 
Information: Species Distribution Modeling-Ensemble 
Approach). For the SDMs, we used only samples 
collected from the present study, as misidentifications 
are common in this group. We removed museum 
specimens with incorrect registers (e.g. registers that 
fell in the Pacific Ocean) and duplicate samples. This 
data curation resulted in 42 occurrence points for 
P. andersoni, 29 for P. coeruleum, 23 for P. dubium, 
and 52 for the P. vanattae/P. humile sister species 
pair (Supporting Information, Table S2). Climate 
data were downloaded from the WorldClim database 
(Hijmans et al., 2005). Current climate data were 
at a resolution of 30 arc s, and LGM data were at a 
resolution of 2.5′. We selected uncorrelated bioclimatic 
variables for each species (r < 0.7) and chose among 
highly correlated variables by prioritizing variables 
that we thought would be most important for the 
focal taxa. The selected variables are reported in the 
Supporting Information (Table S3). We then cropped 
these layers to the extent of the focal region, which 
was defined as −150 to −100° longitude and 35–65° 
latitude. We chose an extent broader than the range 
of the focal taxa because our aim was to hindcast the 
SDMs. Given that suitable habitat in the past might 
have occurred outside current ranges, we included 
areas not currently occupied by the focal taxa, which is 
the usual approach in phylogeographical hindcasting 
studies (e.g. Espíndola et al., 2012; Gavin et al., 2014).

We used several modelling methods (Supporting 
Information: Species Distribution Modeling-Ensemble 
Approach) and ran five replicates per model. We 
randomly sampled 10 000 pseudoabsences from the 
entire background area (defined by the extent of the 
focal region) using the ‘random’ strategy available in 
BioMod. We chose this strategy because results have 
been equivocal on which sampling strategy should be 
preferred, with performance varying greatly across 
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datasets and methods, but with random sampling 
tending to perform best across regression methods, 
and with a relatively small decrease in performance 
with random sampling compared with other sampling 
methods in classification and machine-learning 
techniques (Barbet-Massin et al., 2012).

To build models in Maxent, we used a maximum 
of 1000 iterations to reach convergence and included 
linear, quadratic, product, threshold and hinge 
features. For parameters not specified above, we used 
the default BioMod parameterization. We used 80% 
of our data for training models and 20% for testing, 
and five replicates for each model to evaluate model 
performance. We performed three replicates to 
determine variable importance and evaluated models 
using the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve. Models were 
rescaled, so that they could be combined later. We 
then built an ensemble model ignoring models with 
an ROC of < 0.85 and weighting all other models by 
ROC score. Finally, we forecast the ensemble model 
onto current and past (LGM) climate conditions. 
To evaluate the impacts of modelling choices on our 
SDM results, we also constructed SDMs using an 
alternative strategy and found that our results did not 
change substantially (Supporting Information: Species 
Distribution Modeling using Ecoregions and Maxent).

dna iSolation, Sequencing and analySeS

DNA was extracted using DNeasy Blood and 
Tissue kits (Qiagen), following the manufacturer’s 
standard protocol. A 710 bp portion of the COI gene 
was amplified using the primer pair LCO1490 and 
HCO2198 (described by Folmer et al., 1994). Forward 
and reverse reads were assembled in Geneious v6.1.7 
(Kearse et al., 2012) and edited by eye when necessary. 
All available sequences (46 additional sequences) 
for Prophysaon were downloaded from GenBank in 
August 2017. The muscle (Edgar, 2004) algorithm 
available in Geneious v.6.1.7 (Kearse et al., 2012) was 
used to generate an alignment.

We used the AutoModel function in PAUP* 
v4.0a157 (Swofford, 2002) to select the best model of 
sequence evolution for the entire dataset. To select 
the best model of nucleotide substitution for our 
approximate Bayesian computation (ABC) analysis 
(see next subsection), we used the AutoModel function 
separately for datasets from each of the four disjunct 
taxa, excluding samples from the Blue and Wallowa 
Mountains (see next subsection). As a starting tree, 
we used a neighbor joining tree calculated from Jukes 
Cantor distances. We used the largest model set (11 
substitution schemes), and considered models with 
and without gamma-distributed rate variation across 
sites and a proportion of invariable sites. We evaluated 

models using the small-sample-size corrected version 
of the Akaike information criterion (AICc), Bayesian 
information criterion (BIC) and decision theory (DT; 
Minin et al., 2003).

To obtain posterior distributions of the parameters 
for the model of sequence evolution for use in the 
ABC analyses (see next subsection), we used MrBayes 
v.3.2.6 (Ronquist et al., 2012). For each of the four 
disjunct taxa, MrBayes was run under the model of 
sequence evolution selected by PAUP if the model 
could be implemented. If the model selected using the 
methods above could not be implemented in MrBayes, 
we reran the AutoModel function in Paup* v4.0a157 
(Swofford, 2002) using the reduced set of models (three 
substitution schemes). We conducted 400 independent 
runs, with 32 000 000 generations and four chains per 
run. For models that included gamma rate variation 
across sites, we used eight rate categories. We adjusted 
the temperature parameter to improve mixing, such 
that acceptance rates of initial runs were between 
10 and 70%. We discarded 25% of runs as burn-in 
and combined the 100 independent runs for each of 
the focal taxa; the resulting posterior distributions of 
parameters were used in downstream analyses. We 
checked that the average deviation of split frequencies 
was < 0.01 for each run to assess convergence. 
Additionally, we estimated a maximum likelihood gene 
tree in GARLI v. 2.01 (Bazinet, Zwickl & Cummings, 
2014), with the slugs Hemphillia malonei and Zacoleus 
idahoensis as outgroups (Supporting Information: 
Gene Tree).

demographic model Selection uSing 
approximate bayeSian computation

To test whether the focal taxa harboured cryptic 
diversity structured across the Columbia Basin, 
we first evaluated recent dispersal models (Fig. 1). 
The first two models consisted of post-Pleistocene 
divergence with dispersal and subsequent gene flow 
either from coastal to inland rainforests or from 
inland to coastal rainforests. These models correspond 
to a lack of suitable habitat in either the inland or 
the coastal rainforests during the Pleistocene glacial 
cycles and subsequent post-Pleistocene colonization. 
The third recent dispersal model included pre-
Pleistocene divergence with subsequent gene flow in 
both directions, approximating a scenario in which 
there was ancient vicariance followed by secondary 
contact (Ruffley et al., 2018). After comparing the 
recent dispersal models, we calculated the posterior 
probability of the best dispersal model and a model of 
pre-Pleistocene divergence with no subsequent gene 
flow (ancient vicariance). The models tested were 
parameterized such that population sizes could vary 
for each of the two populations. All divergence time and 
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population size parameters were drawn from uniform 
priors, which were adjusted after initial runs to ensure 
that simulated summary statistics were in the range of 
observed summary statistics for each taxon and region. 
Full information on the priors for each parameter and 
each taxon is available in the Supporting Information 
(Table S4). For the purpose of the ABC analysis, we 
did not consider the Blue and Wallowa populations, 
because we had too few samples from these regions to 
model these populations separately.

To compare these models within each of the four 
focal taxa, we simulated 100 000 datasets under each 
of the three migration models in ms (Hudson, 2002). 
We then used the program Seq-Gen v.1.3.4 (Rambaut 
& Grassly, 1997) to simulate sequence data from the 
gene trees simulated in ms. We simulated 574 bp, to 
match the observed data. Parameters for the model 
of sequence evolution were drawn from the posterior 
distribution of parameters from the MrBayes 
analyses (see previous subsection). We drew the 
scaling parameter from a uniform prior distribution 
(Supporting Information, Table S4). We then used a 
custom python script (available at https://github.com/
meganlsmith) to calculate six summary statistics: 
π; the number of segregating sites (S); Watterson’s 
θ (θW); π within each population; and the number of 

nucleotide differences between populations (nucdiv). 

We calculated π as *π =
= =

−

∑∑2
2 1

1

i

N

j

i

i j ijx x π , where xi and 

xj are the frequencies of the ith and jth sequences, πij 
is the number of nucleotide differences per nucleotide 
site between sequences i and j, and N is the number of 
unique sequences in the sample (Nei, 1979). Watterson’s 
θ was calculated as the number of segregating sites 
divided by the (N − 1)th harmonic number (Watterson, 
1975). The number of nucleotide differences between 
subpopulations was simply the sum of the number of 
nucleotide differences between sequences in each of 
the two populations. We calculated the same summary 
statistics from the observed data using a python script.

We evaluated a range of rejection methods 
(simple rejection and logistic regression), tolerances 
(0.001, 0.005, 0.01 and 0.05) and summary statistic 
combinations using a custom R script and the R 
package ‘abc’ (Csilléry, François & Blum, 2012). We 
performed ten cross-validation replicates for each 
combination of rejection method, tolerance and 
summary statistic combination. We did not use more 
replicates owing to the large number of combinations 
being evaluated and the computational requirements 
of each replicate. Each method was evaluated based 
on the mean posterior probability of the correct model 
across the three migration models. However, using the 

logistic rejection method resulted in errors with many 
simulated and empirical datasets because there was 
too little variation in summary statistics in the selected 
region. Therefore, we considered only rejection methods 
for downstream analyses. The best three methods 
(based on the mean posterior probability of the best 
model across all three models) were evaluated further 
using 100 cross-validation replicates. When more than 
three methods had equivalent posterior probabilities 
across all models being compared, three methods were 
chosen at random, and 100 cross-validation replicates 
were run for these three methods. The best of these 
three methods was then selected based on the sum of 
the posterior probability of the correct model across 
all three models. We then used the winning method to 
calculate the posterior probabilities of each model for 
each taxon.

In a second step, we compared the recent dispersal 
model that had the highest posterior probability with 
the ancient vicariance model. The methods were the 
same as those in the first step of the ABC analysis. 
Cross-validation analyses were conducted in the same 
way as above, and the best model was selected based 
on the winning method.

Finally, we used posterior predictive distributions to 
assess the fit of the best model to the data directly. 
To generate the posterior predictive distribution, we 
simulated 100 datasets under each set of parameters 
from the posterior distribution of parameters under 
the best model. For each summary statistic used, 
we calculated the difference between the posterior 
predictive distribution of the summary statistic and 
the observed statistic, and evaluated whether the 95% 
highest density interval (HDI) included zero using the 
R package ‘HDInterval’ (Meredith & Kruschke, 2017). 
A 95% HDI that does not include zero indicates that 
the model is not a good fit to the data. In addition to 
the ABC analysis described here, we conducted an ABC 
analysis where we simulated only infinite sites data, 
rather than sequence data (Supporting Information: 
ABC with Infinite Sites Data).

RESULTS

Study SyStem and Sampling

We collected samples or downloaded data from 
seven described species of Prophysaon: P. andersoni, 
P. coeruleum, P. dubium, P. foliolatum, P. humile, 
P. obscurum and P. vanattae (Fig. 2; Supporting 
Information, Table S1). For P. andersoni, we collected 
or downloaded sequence data from 11 inland samples, 
66 coastal samples, and four samples from the Blue 
and Wallowa mountains. For P. coeruleum, we collected 
or downloaded data from eight inland and 39 coastal 
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samples. For P. dubium, we collected or downloaded 
data from eight inland samples, 27 coastal samples, and 
one sample from the Blue and Wallowa mountains. For 
P. vanattae and P. humile, we collected or downloaded 
data from 38 inland samples, 33 coastal samples, and 
five samples from the Blue and Wallowa mountains.

predicting cryptic diverSity

The cross-validation analysis indicated that the RF 
classifier performed well for most species. For all species 
except C. armata, the mean posterior probability of 
the correct classification was > 0.90 (Fig. 3), whereas 
for C. armata, the mean posterior probability of a 

cryptic classification was 0.0125. This species was also 
identified as problematic by Espíndola et al. (2016), and 
these issues were attributed to difficulty in classifying 
C. armata as cryptic or non-cryptic using molecular 
data. All Prophysaon species groups were predicted 
to lack cryptic diversity, with a posterior probability 
> 0.98 (Fig. 3). However, when taxonomy was omitted 
or reclassified, these predictions changed. Specifically, 
without taxonomy, all focal taxa were predicted to 
harbour cryptic diversity, but with a low probability 
(Supporting Information, Fig. S1A), and when taxonomy 
was reclassified as vertebrate, invertebrate or plant, all 
taxa were predicted to harbour cryptic diversity with 
a high probability (Supporting Information, Fig. S1B).
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Figure 3. Results from the random forest analysis. Top: results from the cross-validation analysis. Bottom: classification 
results for Prophysaon.
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Figure 4. Species distribution models for the present and the Last Glacial Maximum (LGM). A, Prophysaon andersoni, 
current. B, Prophysaon coeruleum, current. C, Prophysaon dubium, current. D, Prophysaon vanattae/Prophysaon humile, 
current. E, P. andersoni, LGM. F, P. coeruleum, LGM. G, P. dubium, LGM. H, P. vanattae/P.humile, LGM. Current ranges, 
following Burke (2013), are outlined in black.
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SpecieS diStribution modelS

The mean ROC AUC scores with and without models 
with an AUC < 0.85, respectively, were: 0.910 and 
0.948 for P. andersoni, 0.925 and 0.975 for P. dubium, 
0.923 and 0.963 for P. coeruleum, and 0.969 and 
0.972 for P. vanattae/P. humile. Current distribution 
models indicated suitable habitat inland and on the 
coast (Fig. 4) and recovered the known range of the 
different taxa (Fig. 4). When SDMs were hindcast 
to conditions at the LGM, suitability values were 
extremely low in the inland portions of the species 
ranges (Fig. 4).

dna iSolation and Sequencing

The final alignment included 574 bases of the 
mitochondrial gene COI, with no stop codons in 
the reading frame. There was an AT bias in base 
composition (A, 0.321; C, 0.112; G, 0.108; T, 0.459), 
comparable to that found in other invertebrate 
mitochondrial genes (Lin & Danforth, 2004; Liu 
et al., 2012; Hilgers et al., 2016). Maximum within-
species maximum likelihood distances were as 
follows: P. andersoni, 0.447; P. foliolatum, 0.153; 
P. dubium, 0.147; P. coeruleum, 1.080; P. vanattae, 
0.654; P. humile, 0.117; and P. obscurum, 0.083. 
The results of model selection in PAUP for the full 
dataset were concordant across AICc, BIC and DT 
methods (TPM2uf + I + Γ), and all analyses on the 
full dataset were conducted using this model. We 
also used PAUP to determine the best model for 
each disjunct taxon. For P. andersoni, P. coeruleum 
and P. vanattae/P. humile, the results supported 
an HKY + I + Γ model regardless of the criteria (i.e. 
AICc, BIC, DT), whereas a TPM3uf + I model was 
supported for P. dubium. However, as this model 
cannot be implemented in MrBayes, we reran model 
selection for P. dubium using a reduced model set 
that considered only the three substitution schemes 
that can be implemented in MrBayes and chose an 
HKY + I model. Parameter estimates from PAUP are 
reported in the Supporting Information (Table S5). 
For the MrBayes analyses there was no evidence of 
a lack of convergence, and all runs had a standard 
deviation of split frequencies < 0.01.

demographic model Selection uSing abc

Recent dispersal models
The summary statistics for the observed data are 
reported in Table 1. Cross-validation analyses indicated 
moderate to low ability to distinguish among the three 
dispersal models. Across all species, the posterior 

probability of the correct model ranged from 0.361 to 
0.763 in the cross-validation analysis (Table 2). For 
P. andersoni, P. dubium and the P. vanattae/P. humile 
sister species pair, model 1 had the highest posterior 
probability. For P. coeruleum, model 3 had the highest 
posterior probability (Table 3).

Recent dispersal vs. ancient vicariance
Cross-validation analyses indicated high power to 
distinguish between the recent dispersal and ancient 
vicariance models; the posterior probability of the 
correct model ranged from 0.973 to 0.999 (Table 4). For all 
species, the recent dispersal model received the highest 
posterior probability, and the posterior probability of 
the recent dispersal model was always one (Table 5). 
Across all species, the 95% highest density interval 
of the difference between the posterior predictive 
distribution and the observed data contained zero, 
meaning there was no indication of poor model fit. Plots 
of the posterior and posterior predictive distributions 
are available in the Supporting Information (Fig. S2). 
The results did not differ substantially when only 
infinite sites data, rather than sequence data, were 
simulated (Supporting Information: ABC with Infinite 
Sites Data).

DISCUSSION

predicting cryptic diverSity

The predictive model correctly predicted that all 
disjunct taxa included in the present study lacked 
cryptic diversity structured across the Columbia Basin. 
However, this finding might be driven by the relative 
lack of taxonomic breadth of the groups included in 
our model, because the only other mollusc included 
was H. vancouverense, which also lacks cryptic 
diversity. To gain a better understanding of the role of 
taxonomy in our predictions, we omitted taxonomy and 
found that we predicted that all Prophysaon species 
would harbour cryptic diversity with low to moderate 
posterior probabilities. We also ran the predictive 
model with coarsened taxonomic classification by 
recognizing only vertebrates, invertebrates and plants. 
In this case, there were two invertebrates in the model, 
the land snail H. vancouverense and the millipede 
C. armata, and C. armata was classified as cryptic. 
This again resulted in predictions that all species of 
Prophysaon would harbour cryptic diversity with high 
posterior probabilities. These results indicate that our 
RF predictions might be overly reliant on taxonomy, 
most probably because taxonomy serves as a proxy for 
important traits, including dispersal ability, that are 
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not quantified directly. Continuing to add more species 
to the dataset, as this work has done, and generating 
data on the variables we are attempting to summarize 
with taxonomy will improve future classifications.

Given that P. vanattae and P. humile are currently 
described as different species, our finding of recent 
dispersal between these two is surprising. Although 
researchers commonly discuss the lack of phenotypic 
divergence when genetic divergence is present (cryptic 
diversity), the inverse is also a common phenomenon. 
Even within Prophysaon, subspecies designations 
based on morphology have been questioned in the light 

of molecular data (Wilke & Duncan, 2004). Within 
P. vanattae, there exists extensive phenotypic variation 
(Burke, 2013), which might exceed that between 
P. vanattae and P. humile. Given that taxonomic 
classifications drive how we group organisms, and 
thus our results in phylogeographic studies, this work 
highlights the need to revisit these classifications in light 
of phylogeographical evidence (such as that presented 
here) and genomic data. It is possible that our inference 
is driven by incorrectly treating all P. vanattae as a 
single species or by incorrectly splitting P. vanattae and 
P. humile, and future work should test these hypotheses 
using increased sampling, in terms of both individuals and 
loci. Furthermore, support for P. vanattae and P. humile 
as sister species is limited, and the gene tree estimated 
here does not support this relationship. It is possible 
that these species are not sister species, and future work 
including more loci should evaluate this relationship and 
reconsider the results reported here for these species. 
Careful species delimitation using multiple lines of 
evidence (e.g. morphological, ecological and genomic data) 
will be necessary to characterize these taxa accurately.

aSSeSSing model fit

Given that the use of ABC for phylogeographical 
inference can tell us only which of the tested 

Table 1. Summary statistics calculated for the observed data for use in the approximate Bayesian computation (ABC) 
analyses

Species π S Tajima’s D θH
H πinland πcoast

nucdiv θW

Prophysaon 
andersoni

0.0475 144 −0.452 10.0 0.772 0.00824 0.0509 23.2 29.3

Prophysaon 
coeruleum

0.0950 180 0.233 18.6 0.639 0 0.09819 55.1 40.8

Prophysaon dubium 0.0503 90 0.832 16.5 0.564 0.00859 0.0510 31.3 21.9
Prophysaon vanattae/ 

Prophysaon humile
0.0860 172 −0.0692 15.5 0.437 0.04910 0.0801 62.7 35.6

Fay and Wu’s H (H), Fay’s θH statistic (θH), nucleotide divergence between inland and coastal populations (nucdiv), nucleotide diversity (π), nucleotide 
diversity within the coastal population (πcoast), nucleotide diversity within the inland population (πinland), number of segregating sites (S), and 
Watterson’s theta (θW).

Table 2. Cross-validation results for the three recent dispersal models

Species Method Tolerance Sumstats pp(M1) pp(M2) pp(M3)

Prophysaon andersoni Rejection 0.001 π (inland), π (coast), π12
0.468 0.520 0.385

Prophysaon dubium Rejection 0.001 π, S, π (inland), π (coast), π12
0.465 0.464 0.361

Prophysaon vanattae/ Prophysaon humile Rejection 0.001 π, π (inland), π (coast), π12, θW
0.456 0.456 0.414

Prophysaon coeruleum Rejection 0.001 π, S, π (inland), π12
0.530 0.763 0.493

Models correspond to those shown in Figure 1, and the posterior probability (pp) of a model (M) is the mean posterior probability across the cross-
validation replicates in which the data were simulated under that model.

Table 3. Approximate Bayesian computation results for 
the three recent dispersal models

Species M1 M2 M3 BF

Prophysaon andersoni 0.697 0.034 0.269 2.60
Prophysaon dubium 0.540 0.173 0.287 1.88
Prophysaon vanattae/ 

Prophysaon humile
0.580 0.290 0.130 2.00

Prophysaon coeruleum 0.287 0.300 0.413 1.38

The models (M) correspond to those shown in Figure 1, and the posterior 
probabilities are those calculated using the best method selected by 
cross-validation. The Bayes factors (BF) shown are those comparing the 
model having the highest posterior probability with the model having 
the second highest posterior probability.
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models is the best fit to the data, and not how well 
the models fit the data, it is essential to accompany 
model selection with tests of model fit. This need is 
particularly pronounced when analysing relatively 
limited datasets, such as the single mitochondrial 
locus analysed here. We addressed this issue with 
posterior predictive simulation tests of model fit, and 
we found no indication that the best model was a poor 
fit to the data for any of the focal taxa. This increases 
our confidence in the model selection results, because 
it suggests that not only was the selected model a 
better fit to the data than other models in the model 
set, but also the selected model was a reasonable fit to 
the data. This diminishes our concerns about how our 
choice of models might have influenced the results of 
model selection.

concluSionS

The work presented here represents a substantial 
expansion of the predictive framework described by 
Espíndola et al. (2016). It highlights the utility of this 
framework, while suggesting areas where it could be 
improved. The framework appears to make accurate 
predictions in all species analysed here, but these 
predictions are driven largely by taxonomy. Perhaps 
the most promising aspect of the predictive framework 

for phylogeography is its capacity to integrate 
phylogeographical research conducted at different 
points in time and in different empirical systems. An 
attribute of this integration is that the framework 
should increase in its utility and accuracy as more 
diverse taxa are incorporated. Our study has nearly 
doubled the number of species complexes (from seven 
to 12) that can be included in the predictive framework 
for the PNW temperate rainforest, and should improve 
the accuracy of this framework for future research via 
both the expansion of the taxon set and the careful 
exploration of the ABC methodology.

Indeed, such an iterative approach has been central 
to taxonomic research since its inception; hypotheses 
are formed, tested and then modified. The predictive 
framework developed by Espíndola et al. (2016), and used 
and expanded here, allows phylogeographical research 
to proceed in the same way. Information about previously 
studied species is used to construct hypotheses about 
what factors affect the phylogeographical histories of 
different taxa. In the present study these factors were 
environmental and taxonomic, but they could also 
include trait and life-history data. These hypotheses are 
then used to generate predictions about unstudied taxa. 
After these predictions are tested, we can modify our 
hypotheses by considering environmental, ecological 

Table 4. Cross-validation results for the step comparing the best recent dispersal model with the ancient vicariance 
model

Species Recent  
dispersal 
model

Method Tolerance Sumstats pp(recent 
dispersal)

pp(ancient 
vicariance)

Prophysaon andersoni 1 Rejection 0.001 π, S, π (inland), π 
(coast), θW

0.977 0.986

Prophysaon dubium 1 Rejection 0.001 S, π12
0.977 0.981

Prophysaon vanattae/ 
Prophysaon humile

1 Rejection 0.001 π, π (inland), π12, θW
0.973 0.995

Prophysaon coeruleum 3 Rejection 0.001 π, S, π (coast) 0.984 0.999

Models correspond to those shown in Figure 1, and the posterior probability (pp) of a model is the mean posterior probability of the model across the 
cross-validation replicates in which the data were simulated under that model.

Table 5. Approximate Bayesian computation results for step comparing the best recent dispersal (RD) model with the 
ancient vicariance (AV) model

Species RD model p(RD) p(AV) BF

Prophysaon andersoni 1 1 0 Inf
Prophysaon dubium 1 1 0 Inf
Prophysaon vanattae/Prophysaon humile 1 1 0 Inf
Prophysaon coeruleum 3 1 0 Inf

The models correspond to those shown in Figure 1, and the posterior probabilities are those calculated using the best method selected by cross-
validation. The Bayes factors (BF) shown are those comparing the model having the highest posterior probability with the model having the second 
highest posterior probability. Inf = infinite.
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and other traits of the newly added taxa. This leads 
to a cyclical approach, in which we constantly modify 
and improve our hypotheses about how environmental 
and intrinsic factors drive species’ responses to climatic 
and geological events, and provides a novel means to 
integrate phylogeographical datasets. This is no trivial 
accomplishment, given the scale of phylogeographical 
datasets that have been collected to date: a Web of 
Science search of the term phylogeograph* returned 
15 911 hits (7 December 2017). Integrating these data 
into a common framework that allows researchers to 
develop and test hypotheses on a large scale has been a 
difficult task, and the predictive framework used here is 
a step towards that goal.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Table S1. Sampling localities from this study, including samples from GenBank.
Table S2. Occurrence points used to build species distribution models (SDMs).
Table S3. Bioclimatic variables used in species distribution models.
Table S4. Priors for the approximate Bayesian computation (ABC) analysis.
Table S5. Parameters from PAUP* model selection results.
Table S6. Cross-validation results for the three recent dispersal models with infinite sites data.
Table S7. Approximate Bayesian computation (ABC) results for the three recent dispersal models with infinite 
sites data.
Table S8. Cross-validation results for the recent dispersal vs. ancient vicariance step with infinite sites data.
Table S9. Approximate Bayesian computation (ABC) results for the recent dispersal vs. ancient vicariance step 
with infinite sites data.
Figure S1. Results of predictions from the RF classifier when (A) no taxonomy and (B) a revised classification 
was used. The revised classification included three ranks: vertebrate, invertebrate and plant.
Figure S2. Posterior and posterior predictive distributions are shown compared with observed summary statis-
tics when sequence data were simulated. Posterior distributions shown in blue, posterior predictive distributions 
are shown in red, and observed data are indicated by black dotted lines.
Figure S3. Species distribution models constructed in Maxent. The average across five replicates is shown both 
for the present and for the Last Glacial Maximum (LGM) for each species. A, Prophysaon andersoni, current. B, 
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P. andersoni, LGM. C, Prophysaon dubium, current. D, P. dubium, LGM. E, Prophysaon coeruleum, current. F, 
P. coeruleum, LGM. G, Prophysaon vanattae and Prophysaon humile, current. H, P. vanattae and P. humile, LGM.
Figure S4. Gene tree estimated in GARLIv2.0, with bootstrap support for major groups.
Figure S5. Majority rule consensus tree including all compatible groups. Bootstrap replicates were constructed 
in GARLIv2.0, and the consensus tree was computed in PAUP* v.4.0.

SHARED DATA

All sequences are available on GenBank (accession numbers: MH324506–MH324729). Scripts are available from 
github (https://github.com/meganlsmith/).
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