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7 Species Delimitation 
Using Molecular Data

Megan L. Smith and Bryan C. Carstens

7.1 � INTRODUCTION

The Linnean shortfall, which describes the fact that only a small portion (1–10%) of 
extant species have been formally described (Brown and Lomolino 1998, but see Mora 
et al. 2011), is one of the most pressing challenges faced by the biological sciences. 
A lack of formal species description is likely to complicate conservation assessments 
(Beheregaray and Caccone 2007), bias evolutionary (Hortal et al. 2015), biogeographi-
cal (Whittaker et al. 2005), and ecological (e.g., Prada et al. 2014) studies, and have 
practical implications for disease ecology (e.g., Byrne et al. 2019), invasive species 
(Bickford et al. 2007), and wildlife management (Bickford et al. 2007). Amplifying 
this challenge is the ongoing loss of biodiversity (Costello et al. 2013), which makes 
addressing the Linnean shortfall a challenge with an inherent expiration date. For sev-
eral decades, molecular data have been viewed as having the potential to address the 
Linnean shortfall (e.g., Herbert et al. 2003). However, despite their promise for this 
application, molecular data have a turbulent history of application in species delimita-
tion, one that is complicated by researcher biases, a clear lack of best practices, and the 
varying information content of the data itself. While we do not hope to solve these prob-
lems in this chapter, we do hope that our discussion of the challenges inherent in delim-
iting species with genetic data will help researchers adopt useful strategies for practice.

7.2 � MOLECULAR DATA AND THEIR INFLUENCE 
ON SPECIES DELIMITATION

Molecular data are now ubiquitous in the biological sciences. While they are easy 
to collect at the species level (McCormack et al. 2013) and have become central to 
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many evolutionary and ecological applications, including species delimitation, the 
widespread adoption and application of these data required biologists to adjust their 
thinking in various disciplines. For example, phylogeny inference has become far 
more quantitative and statistical since molecular data became common; a change 
prompted both by the increasing size of phylogenetic datasets and the change in the 
nature of the characters that form the basis of phylogenetic inference (Scornavacca 
et al. 2020). Similarly, taxonomists have been required to adopt both conceptual and 
practical changes in their approach to data analysis once massive amounts of molec-
ular data became available to augment the trait data that were traditionally used 
to delimit species. Perhaps the most important of these was related to perspective. 
While investigations into the species level necessarily occur at the interface between 
phylogenetics and population genetics, initial attempts to apply molecular data to 
the question of species boundaries came primarily from systematists who were 
trained in phylogenetic biology. Influential papers encouraged researchers to apply 
phylogenetic thinking to intraspecific variation in a geographic context (e.g., Avise 
et al. 1987); a suggestion that found a receptive audience in researchers with a back-
ground in systematic biology and led to the exploding popularity of phylogeography. 
Phylogenetic species concepts sensu lato, such as genealogical species concepts (e.g., 
Baum and Shaw 1995) or criteria based on fixed allelic differences (e.g., population 
aggregation analysis; Nixon and Wheeler 1992), may have been natural outcomes of 
early efforts to apply phylogeographic data to detect species limits, albeit outcomes 
that proved difficult to apply in practice (e.g., Palumbi et al. 2001). Two developments 
from different disciplines, coalescent theory (Kingman 1982) and conceptual work 
on species concepts (e.g., Mayden 1997; de Querioz 1998), led to a remarkable shift 
in how phylogeographic data were applied to the question of species limits.

Once multilocus sequence data became widely available in the early 2000s, 
researchers began to observe substantial incongruence in the inferred gene trees 
across sequenced loci (e.g., Funk and Omland 2003). After researchers had been 
encouraged to conceptualise intraspecific variation as the end point of phylogeny, 
the many discordant trees that they observed prompted new ways of thinking about 
the phylogenies that were inferred from sequence data collected in empirical sys-
tems. For example, the concept of the species tree was introduced (i.e., gene trees in 
species trees; Maddison 1997) to differentiate the phylogeny that can be estimated 
using individual genes’ sequence data from the history of organismal diversifica-
tion. Ultimately, it became more useful to think about phylogeny as a property that 
emerges from population-level processes because this enables incongruent empiri-
cal data to be modeled using coalescent theory (Kingman 1982). This radical shift, 
which began when the expectations of taxonomists met the realities of phylogeo-
graphic data, has resulted in the most substantive shift in systematic biology since 
the introduction of cladistic analysis.

Coalescent theory describes a stochastic model of the loss of alleles in a popula-
tion via genetic drift. The broader implications of coalescent theory are relevant to 
species delimitation, although they were underappreciated until Hudson and Coyne 
(2002) described in detail the mathematical consequences of using a genealogical 
species concept. Their argument is as follows: at neutral loci, allelic variation that is 
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present in a lineage at the time of speciation will gradually sort into monophyletic 
clades in the daughter lineages, but the rate at which this occurs is a property of the 
effective population size (Ne) of the parent lineage. While the expectation of the 
time required for this lineage sorting to occur is 4Ne*generations (Kingman 1982), 
Hudson and Coyne demonstrate that there is considerable variance around this 
expectation; for example, it would take 9–12 Ne*generations for 95% of sampled loci 
to be reciprocally monophyletic. Even for species with modest effective population 
sizes (say 50,000 individuals), taxonomists would not be able to delimit species using 
a phylogenetic or genealogical species concept that uses monophyly as a criterion 
for hundreds of thousands of generations after the speciation event has occurred, 
even in simple cases where a single ancestor forms two new species with no further 
diversification. Given that many species have larger effective population sizes and 
complex patterns of diversification that may include introgression, the implication 
of coalescent theory to species delimitation is clear: genealogical and phylogenetic 
species concepts are difficult to apply near the species level because genealogies may 
not reflect the actual species phylogeny. Unless taxonomists are willing to accept that 
evolutionary lineages that are effectively independent of one another (and may have 
been for a million years!) do not obtain species status until all of this ancestral varia-
tion has sorted via genetic drift, the stochastic realities of lineage sorting require 
population-level thinking. Coalescent theory presently serves as the statistical foun-
dation of modern phylogeographic inference, but another conceptual development 
was needed for the potential applicability of coalescent theory to the question of 
species boundaries to become clear.

Mayden (1997) and de Queiroz (1998) introduced a fundamental shift in how 
biologists thought about species concepts. They argued that while species concepts 
disagreed about the criteria used to recognise species (i.e., morphological distinc-
tiveness, reproductive isolation, monophyly), all concepts fundamentally envisioned 
species as independent evolutionary lineages at the population or metapopulation 
level. The general lineage concept, proposed by de Queiroz (2005), encouraged 
researchers to equate species to independent evolutionary lineages regardless of the 
method used to identify them as such. This outlook on species fits nicely with mod-
ern coalescent-based methods for delimiting species. The conceptual unification of 
this concept with coalescent theory began during a symposium on species delimita-
tion organised by the Society of Systematic Biologists at the 2006 Evolution Annual 
Meeting in Stoneybrook, New York. Kevin de Queiroz presented a lecture on species 
concepts, outlined his general lineage concept, and mentioned how coalescent theory 
makes it possible to extend the general lineage concept into a unified species con-
cept, where independent lineages can be recognised as species (de Queiroz 2007). 
In the same symposium, Lacey Knowles presented work that described a likelihood 
ratio test of lineage independence that enabled researchers to delimit species without 
relying on monophyletic gene trees (Knowles and Carstens 2007). This test utilised 
data simulated under the coalescent model where two lineages were independent and 
compared these data with those simulated under a model where the lineages were not 
independent. The lasting influence of this test has been felt in the general framework 
of the proposed statistical comparison (i.e., modeling the statistical fit of the data 
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given two models, one where lineages are independent and one where lineages are 
combined), as many newer methods are based on statistical comparisons of species 
trees that include different groupings of putative species (Yang and Rannala 2010; 
Ence and Carstens 2011; Grummer et al. 2014; Leaché et al. 2014a).

Under the unified species concept, independently evolving lineages can be delim-
ited as distinct species. While on a superficial level, this may appear to eliminate 
subjective decisions from the process of species delimitation, this definition of spe-
cies is likely to result in over-splitting under some models of speciation when popula-
tion genetic structure is present (Sukumaran and Knowles 2017). As more genomic 
data are gathered, many algorithms become more effective at identifying population 
genetic structure, highlighting the need for sanity checks in species delimitation (e.g., 
Jackson et al. 2017b), where the intuition of the taxonomist is considered. Given that 
taxonomists generally do not wish to name all populations as species due to practical 
considerations (Zachos et al. 2020), additional considerations may be required. For 
example, Zachos et al. (2020) distinguish between the process of grouping organ-
isms into ‘species taxa’ and making the subjective decision of whether these taxa 
should be ranked as species in the Linnaean classification system. To the extent 
that researchers do not view each independently evolving population as warranting 
species recognition, the coalescent and related models and methods cannot address 
this second aspect of species delineation, which requires taxonomic expertise and 
subjective thought. Regardless, coalescent-based approaches to species delimitation 
provide valuable information about the status and history of species taxa, and this 
information can serve as the basis for integrative taxonomic efforts.

7.3 � PRACTICAL CONSIDERATIONS IN SPECIES DELIMITATION

Genomes accumulate nucleotide substitutions at a rate that is influenced by demo-
graphic processes (i.e., gene flow, population size change), natural selection, and 
recombination as the population evolves over time. The pattern of nucleotide varia-
tion across individuals sampled from multiple lineages within a species complex 
will retain information about the recent history of that complex, and any method 
used to delimit species with molecular data will attempt to access this informa-
tion. However, decisions made by researchers can potentially influence the results 
of a species delimitation analysis. Perhaps the most important factor to consider 
at the outset of an investigation is the sample design. As with any source of infer-
ence, the strength of the signal is likely to be positively correlated with the size of 
the dataset, although comprehensive evaluations of this relationship have not been 
conducted for all methods. Note that the size of the dataset is best measured on two 
axes, the number of loci and the number of samples, as the former determines how 
many independent realizations of the coalescent process are sampled, and the latter 
determines how well the allelic and/or genotype frequencies of the sample match 
the actual values from the empirical system. An equally important consideration is 
to document what information exists about potential division of individuals within 
a nominal taxon. For example, are there described subspecies? Allopatric popula-
tions? Evident environmental gradients that could serve to divide a population? Any 
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of these factors could serve to guide researchers as they acquire samples and choose 
individuals for sequencing. They can also influence the types of analyses that are 
chosen by researchers once the genetic data are collected. Related to each of these is 
the question of what type of genetic data to collect. Data can be collected on a locus-
by-locus basis using polymerase chain reaction and Sanger sequencing methods, but 
this can be tedious work. Next-generation-sequencing technologies enable research-
ers to collect data from thousands of loci, either in the form of sequence capture 
techniques (e.g., Faircloth et al. 2012) or using restriction-digest approaches (Miller 
et al. 2007). Notably, the technology used for sequencing also affects downstream 
methodological choices, as some methods are designed for use with single nucleotide 
polymorphism (SNP) data while others are designed for sequence data.

Carstens et al. (2013) proposed that researchers conceptualise species delimi-
tation as a two-step process. Since many taxa lack obvious partitions, such as 
described subspecies or populations that are clearly allopatric, the first analyses for 
many investigations should be discovery approaches that do not require samples 
to be partitioned prior to analysis. Discovery approaches include methods such as 
structure (Pritchard et al. 2000) or admixture (Alexander and Lange 2011), which 
implement algorithms that cluster samples into groups based on some criterion, such 
as minimizing Hardy–Weinberg disequilibrium, as well as methods based on genetic 
distances (e.g., Automatic Barcode Gap Discovery [abgd]) and those based on gene 
tree diversification (e.g., Generalized Mixed Yule Coalescent [gmyc)]; Pons et al. 
2006). The key information obtained via the use of these methods is a division of 
the samples into two or more groups that can serve as the basis for the next step of 
species delimitation. Methods that require samples to be partitioned prior to analy-
sis, such as species-tree-based programs (e.g., bpp (Yang and Rannala 2010), bfd* 
(Leaché et al. 2014a) and those based on demographic models (e.g., delimitR (Smith 
and Carstens 2020), phrapl (Jackson et al. 2017a), work on some level by comparing 
the probability of the data given the model where a key component of the model is 
the assignment of samples to each putative lineage. See Box 7.1 for additional exam-
ples of species discovery and species validation approaches, and Rannala and Yang 
(2020) for a recent review of several approaches. Note that some investigations omit 
the first step (i.e., discovery) because there are a priori groupings of samples (e.g., 
Morales et al. 2018). Others conduct both steps sequentially, with sample partitions 
in the validation stage informed by the clustering of samples from the discovery 
phase (e.g., Leaché and Fujita 2010). One challenge to this approach is how to treat 
samples where there is evidence of admixture (i.e., genetic ancestry in an individual 
sample that can be traced to two or more populations). Some researchers remove 
these samples from the validation analysis, since we know that gene flow can inter-
fere with species tree estimation (Eckert and Carstens 2008; Leaché et al. 2014b). 
However, this should not be done if divergence with gene flow models is included, 
because it could presumably bias the validation analysis. Notably, some discovery 
and most validation approaches rely on particular models of the speciation process, 
and the choice and application of such models can greatly impact the results of spe-
cies delimitation analyses. In the following, we discuss popular models employed in 
species delimitation and their potential shortfalls.
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7.4 � THE IMPORTANCE OF MODELS

The Multispecies Coalescent Model (MSCM) addresses the difficulties of applying 
genealogical and phylogenetic species concepts near the species level by directly 
modeling the coalescent process (Knowles and Carstens 2007). By modeling the 
causes of incomplete lineage sorting, methods based on the MSCM allow research-
ers to go beyond a monophyly criterion and address whether observed genealogies 
are consistent with different numbers of species. Species delimitation methods based 
on the MSCM have proliferated since its development (e.g., Yang and Rannala 2010; 
Ence and Carstens 2011; Leaché et al. 2014a), and many allow researchers to use 
genetic data to assess the probability of different numbers of species.

While the MSCM is undoubtedly a powerful approach to delimiting species with 
genetic data, it is not without its limitations. As with any model-based approach, the 
MSCM makes certain assumptions, which if violated, may render the results of species 
delimitation under the model unreliable. For example, MSCM methods rely on a pri-
ori definitions of populations or putative species (i.e., they are validation approaches). 
When populations are estimated using genetic data from sparse sampling, geographic 
clines can be mistaken for discrete populations, and this can lead to over-splitting 
under the MSCM (Chambers and Hillis 2020). The MSCM also assumes that specia-
tion is an instantaneous process, and recent results demonstrate that when this is not 
the case, but rather, speciation is protracted, the MSCM will over-split, delimiting 
population structure as distinct species (Sukumaran and Knowles 2017).

Perhaps the best-known violation of the MSCM is the presence of gene flow 
between populations or species. The MSCM models only genetic divergence and 
does not consider the possibility of post-divergence gene flow between lineages. 
However, gene flow is thought to be important in speciation, and is implicated in 
many empirical systems, including Myotis bats (Morales et al. 2017) and flowering 
plants on Lord Howe Island (Papadopulos et al. 2011). Simulation studies demon-
strate that ignoring gene flow causes overestimates of population sizes and underes-
timates of divergence times under the MSCM (Leaché et al. 2014b), and bpp (Yang 
and Rannala 2010) may delimit populations as species even when levels of gene flow 
between populations are high (Jackson et al. 2017b; Leaché et al. 2019). However, 
recent attempts to use more appropriate models that consider gene flow, for example, 
have improved error rates and led to more meaningful species delimitation (Jackson 
et al. 2017b; Leaché et al. 2019; Smith and Carstens 2020).

Considering these results, it is clear that the choice of appropriate models is 
essential for species delimitation using genetic data. While choosing an appropriate 
model is not always straightforward, recent advances in simulation-based approaches 
provide a promising avenue for species delimitation. Software for simulating large 
genomic datasets under models including divergence, gene flow, and population size 
changes has improved vastly in speed and computational efficiency in recent years 
(e.g., Excoffier et al. 2013). More recently, the development of tree-sequence record-
ing has permitted simulating tens of thousands of replicates of genomic datasets under 
models that include selection as well as demographic processes (Kelleher et al. 2016; 
Haller et al. 2019). The ability to simulate many replicates of large genomic datasets 
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under various models permits researchers to then use either Approximate Bayesian 
Computation (e.g., Camargo et al. 2012) or machine learning approaches (e.g., Pei 
et al. 2018; da Fonseca et al. 2020; Smith and Carstens 2020) to find the model that 
generates data most similar to the observed data. By combining new powerful simu-
lation approaches with machine learning, researchers are effectively limited only by 
their creativity and the computational resources available when designing a model 
set. It should be noted that larger model sets inevitably lead to increased difficulties 
in differentiating among models (Pelletier and Carstens 2014), even when machine 
learning approaches are employed (Smith and Carstens 2020), because the distance 
in model space between these models decreases. While choosing models to compare 
a priori requires researchers to make decisions about which processes are likely to 
be important in their focal system, researchers are implicitly making such decisions 
when they utilise tools that explore a limited number of processes, like methods based 
on the MSCM. By using approaches that ignore processes like gene flow, researchers 
assume that those processes are not important. Leaving the power to determine which 
models to test to researchers who are experts in their study system takes advantage 
of their knowledge of the taxa, similarly to traditional taxonomic investigations. We 
view this aspect of defining a model set as a positive aspect of species delimitation, but 
it could lead to biases when all models considered are a poor fit to the data, or when 
researchers limit their model set too strictly to match misleading a priori knowledge 
of the study system. Tools to directly assess model fit, like posterior predictive simula-
tions (e.g., Fonseca et al. 2021) or composite likelihood ratio tests (e.g., Excoffier et al. 
2013), may help researchers to diagnose such situations.

Evaluating a broader array of models not only prevents erroneous inference due to 
model violations but also may provide novel insights into the processes driving specia-
tion. Different modes of speciation involve different demographic and selective pro-
cesses, and by modeling these processes directly, researchers may be able to address 
not only how many species are present but also the processes that gave rise to these spe-
cies. For example, gene flow and directional selection may play an important role when 
divergent ecological selection drives speciation in sympatry (Coyne and Orr 2004) or 
when reinforcement drives speciation between once isolated populations (e.g., in Phlox; 
Hopkins and Rausher 2011). On the other hand, when speciation occurs in allopatry, 
genetic drift, natural selection, or some combination of the two may drive divergence 
(Coyne and Orr 2004). By designing models based on predictions about the mode of 
speciation and then using machine learning or other approaches to determine which of 
those models best reproduces the observed data, researchers can identify the most likely 
mode of speciation in their system as well as the number of species present. Of course, 
doing so requires researchers to explicitly state an operational species concept.

While model selection itself provides insights into the number of species and the 
process of speciation, it also permits more accurate parameter estimation (Thomé 
and Carstens 2016). When parameters are accurately estimated, they provide insight 
into the magnitude of divergence and gene flow between populations, essential 
parameters for determining whether populations represent independent evolutionary 
units (Rannala and Yang 2020). Additionally, parameter estimates may lend insight 
into the correspondence of speciation events with geologic and climatic processes. 
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For example, more precise parameter estimates might provide resolution on how the 
Pleistocene glaciations impacted speciation, or the extent to which divergence can 
occur with gene flow.

7.5 � PROSPECTS FOR THE FUTURE

As genomic data become increasingly available near the species level, opportunities 
to connect process to pattern in taxonomy are ripe. Already, with the rise in popular-
ity of the Multispecies Coalescent Model in species delimitation, taxonomists have 
begun to embrace the link between population-level and species-level processes and 
to use models based explicitly on these processes to evaluate species delimitation 
hypotheses. With further advances in the nature of genetic data and in the mod-
els and computational tools available to taxonomists, we believe that the field of 
molecular-based species delimitation will rely increasingly on evolutionary genetics, 
linking genetic variation to the specific evolutionary processes that drove speciation. 
As our understanding of the importance of selective processes on structuring genetic 
variation increases, future developments may take advantage of this and model spe-
ciation as the complex interplay of neutral and selective processes that it is. This 
should shed additional light on the history of populations and prove invaluable to 
taxonomists when evaluating the species status of lineages.

Although molecular data held (and continue to hold) great promise for species 
delimitation, the importance of other data sources, including morphological and eco-
logical data, should not be overlooked. The call for so-called integrative taxonomy 
(Weins and Penkrot 2002; Sites and Marshall 2004; Dayrat 2005; Winker 2009; 
Padial et al. 2010; Schlick-Steiner et al. 2010; Yeates et al. 2011) highlights the poten-
tial benefits of combining data types when inferring species boundaries. Phenotypic 
and ecological data have further power to illuminate the process of speciation and 
to allow researchers to distinguish among population- and species-level variation 
(Cadena and Zapata 2021). Further, following up molecular studies with phenotypic 
and ecological investigations may provide diagnostic characters, without which the 
recognition of distinct species in the field by conservation biologists and ecologists 
is impossible. In short, the availability of molecular data does not eliminate the need 
for phenotypic and ecological data. Rather, by combining molecular, phenotypic, 
and ecological data, researchers can better understand how genetic divergence, phe-
notypic divergence, and ecological divergence differ across putative species, which 
should not only inform taxonomic efforts but also shed light on the processes of spe-
ciation and diversification in a way that either data type on its own could not (Winker 
2009; Cadena and Zapata 2021).

7.6 � SPECIES DESCRIPTION IS A NECESSARY LAST 
STEP IN A DELIMITATION ANALYSIS

Although species delimitation studies have flourished in recent years, a remark-
ably small number of those studies follow up with the description of delimited spe-
cies. Pante et al. (2015) found that ~47% of integrative taxonomy studies published 
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between 2008 and 2013 did not describe newly delimited species. Without follow-
ing up with taxonomic revisions, species delimitation studies hardly address the 
Linnean shortfall that we often claim as the motivation for the field. A variety of 
factors likely contribute to the failure of many studies to describe the species that 
are inferred by species delimitation investigations. First, the lack of species descrip-
tion might signal a lack of confidence in the results – an unwillingness to commit to 
the delimited species (Pante et al. 2015). As mentioned earlier, taxonomists may not 
view all independently evolving populations as warranting formal species recogni-
tion (Zachos et al. 2020), and thus, some lack of species description may only reflect 
that delimited entities do not meet a particular taxonomist’s criteria for describing 
a new species. Second, it may be that researchers plan to follow up the delimitation 
results with further morphological, behavioral, or other types of taxonomic investi-
gation (Pante et al. 2015), particularly since describing species with non-traditional 
characters (e.g., molecular characters) remains difficult (Satler et al. 2013). Due to 
the ease of collecting molecular data, it could be that these investigations are more 
easily completed and published than integrative work that incorporates multiple data 
types. Third, researchers could feel inhibited by the formal rules associated with 
taxonomic description in the Zoological or Botanical Codes, potentially due to a 
lack of training (Pante et al. 2015; Pearson et al. 2011). Finally, there are likely to be 
fewer professional rewards for publishing in the taxonomic literature, for while these 
papers have a long potential history of citation, they likely will receive less notice 
in the immediate future than works published in the general interest literature. The 
competition for space is fierce for journals in the latter category, and editors might 
balk at devoting several pages to species description; thus, general interest journals 
rarely publish taxonomic revisions (Pante et al. 2015; Agnarsson and Kunter 2007). 
Pressure to publish in journals with high impact factors may therefore discourage 
authors from including species descriptions in their work. For species delimitation 
to address the Linnean shortfall, these issues must be addressed, so that discovered 
species are subsequently described. We urge funding panels to demand that propos-
als which include species delimitation also include species description. Furthermore, 
senior scientists need to be more vocal to their administration in highlighting the 
importance of species description, particularly when conducted by early career 
researchers.

BOX 7.1  Examples of Popular Species Discovery Approaches

Population Genetic Structure. structure uses a Bayesian clustering approach 
to assign individuals to populations and estimate population allele frequen-
cies (Pritchard et al. 2000). structure assumes that markers are unlinked 
and that each population is in Hardy–Weinberg equilibrium (Pritchard et al. 
2000). Recent advances have improved the computational efficiency of the 
approach used in structure (Raj et al. 2014). structure is often combined with 
ad-hoc methods (e.g., Earl 2012; Evanno et al. 2005) to estimate the number 
of populations. Like structure, structurama (Huelsenbeck et al. 2011) assumes 
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Hardy–Weinberg equilibrium, but it also uses a Dirichlet-process prior on the 
number of populations and reversible jump MCMC to allow simultaneous 
inference of population assignments and the number of populations.

Generalized Mixed Yule Coalescent (gmyc). The gmyc (Pons et al. 2006) 
takes ultrametric gene trees (i.e., rooted trees where a molecular clock has 
been enforced) as input. It then infers the transition point between branch-
ing events, corresponding speciation events (the Yule process), and branch-
ing events corresponding to allele coalescence within species (the coalescent 
process). Reid and Carstens (2012) introduced a Bayesian implementation of 
the gmyc (bgmyc), which takes as input a posterior distribution of gene trees 
and outputs posterior distributions of the number and composition of species.

Automatic Barcode Gap Discovery (abgd). abgd (Puillandre et al. 2012) 
takes as input short sequences and searches for a gap in the distribution of pair-
wise differences between sequences. abgd requires that the user supply a prior 
maximum divergence of intraspecific diversity, and this value determines how 
finely abgd divides individuals into species. Like the gmyc, abgd is limited to 
single-locus data.

Multivariate Methods. Multivariate methods (e.g., methods based on 
Principal Components Analysis [PCA]) are powerful because they are fast and 
do not make assumptions about evolutionary models generating population 
and species divergence. Adegenet is a popular software package that com-
bines PCA and Discriminant Analysis of Principal Components to assign indi-
viduals to populations (Jombart et al. 2010).

Machine Learning. Recently, Derkarabetian et al. (2019) applied a suite 
of machine learning approaches to perform species discovery analysis. They 
applied Random Forests, Variational Autoencoders, and t-Distributed Stochastic 
Neighbor Embedding to assign individuals to populations (or species) and found 
that they have high power to identify population structure. As with the multivari-
ate methods described earlier, these approaches do not make assumptions about 
the evolutionary models generating population and species divergence.

BOX 7.2  Examples of Popular Species Validation Approaches

bpp. bpp (Yang and Rannala 2010) is a fully Bayesian approach to multilocus 
species delimitation. bpp takes as input DNA sequence data and uses reversible 
jump MCMC to estimate the species tree topology, the number of populations, 
genetic diversity, and population divergence. Recently, the model underlying 
bpp was extended to allow estimation of introgression probabilities (Flouris et 
al. 2019).

Bayes Factor Delimitation. Bayes Factors can be used to compare models 
when marginal likelihoods of the competing models are available and were 
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initially used in the context of species delimitation by Carstens and Dewey 
(2010) and Grummer et al. (2014). The popular species delimitation software 
bfd* (Leaché et al. 2014a) applies Bayes Factor Delimitation to genome-wide 
SNP data by using snapp to calculate marginal likelihoods for all hierarchical 
arrangements of individuals into predefined populations and then comparing 
models using Bayes Factors.

phrapl. phrapl (Jackson et al. 2017a) takes as input gene trees and popula-
tion assignments and can be applied to species delimitation (Jackson et al. 
2017b). To compare different delimitation hypotheses, phrapl approximates 
the likelihood of models that differ in the number of species and the species 
history and compares models using information theory.

clades. clades (Pei et al. 2018) simulates data belonging to either the same 
or different species and then trains a support vector machine (SVM) to rec-
ognise whether two samples come from the same or different species. Using 
this SVM, clades can classify DNA sequence data sampled from populations 
as belonging to the same or different species. Finally, if there are more than 
two putative species, clades maximises the likelihood of the species status of 
all populations.

delimitR. delimitR (Smith and Carstens 2020) takes as input a multidi-
mensional Site Frequency Spectrum (mSFS) and allows users to specify mod-
els including divergence, migration (primary or upon secondary contact), and 
population size changes. Then, fastsimcoal2 (Excoffier et al. 2013) is used to 
simulate mSFS under each model. Finally, a Random Forest classifier is con-
structed using the R package ‘abcrf’ (Pudlo et al. 2016) and used to select the 
best model and to estimate classification error rates under each model.

soda. soda (Rabiee and Mirarab 2021) uses the algorithm of the popular 
species tree inference software astral (Mirarab et al. 2014; Zhang et al. 2018) 
and expected patterns of quartet frequencies to infer species boundaries.

REFERENCES

Agnarsson, I., and M. Kunter. 2007. Taxonomy in a changing world: Seeking solutions for a 
science in crisis. Systematic Biology 56:531–539.

Alexander, D. H., and K. Lange. 2011. Enhancements to the ADMIXTURE algorithm for 
individual ancestry estimation. BMC Bioinformatics 12:246.

Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb, 
and N. C. Saunders. 1987. Intraspecific phylogeography: The mitochondrial DNA 
bridge between population genetics and systematics. Annual Review of Ecology and 
Systematics 18:489–522.

Baum, D. A., and K. L. Shaw. 1995. Genealogical perspectives on the species problem. 
Experimental and Molecular Approaches to Plant Biosystematics 53:123–124.

Beheregaray, L. B., and A. Caccone. 2007. Cryptic biodiversity in a changing world. Journal 
of Biology 6:9.

TNF_07_K50013_C007_docbook_new_indd.indd   155 22-03-2022   07:59:47



156 ﻿Species Problems and Beyond

Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram, 
and I. Das. 2007. Cryptic species as a window on diversity and conservation. Trends in 
Ecology and Evolution 22:148–155.

Brown, J. H., and M. V. Lomolino. 1998. Bioegeography (2nd ed.). Sunderland: Sinauer.
Byrne, A. Q., V. T. Vredenburg, A. Martel, F. Pasmans, R. C. Bell, D. C. Blackburn, M. 

C. Bletz, J. Bosch, C. J. Briggs, R. M. Brown, A. Catenazzi, M. Familiar López, R. 
Figueroa-Valenzuela, S. L. Ghose, J. R. Jaeger, A. J. Jani, M. Jirku, R. A. Knapp, A. 
Muñoz, D. M. Portik, C. L. Richards-Zawacki, H. Rockney, S. M. Rovito, T. Stark, H. 
Sulaeman, N. T. Tao, J. Voyles, A. W. Waddle, Z. Yuan, and E. B. Rosenblum. 2019. 
Cryptic diversity of a widespread global pathogen reveals expanded threats to amphib-
ian conservation. Proceedings of the National Academy of Sciences 116:20382–20387.

Cadena, C. D., and F. Zapata. 2021. The genomic revolution and species delimitation in 
birds (and other organisms): Why phenotypes should not be overlooked. Ornithology 
138:ukaa069.

Camargo, A., M. Morando, L. J. Avila, and J. W. Sites Jr. 2012. Species delimitation with 
ABC and other coalescent‐based methods: A test of accuracy with simulations and 
an empirical example with lizards of the Liolaemus darwinii complex (Squamata: 
Liolaemidae). Evolution: International Journal of Organic Evolution 66:2834–2849.

Carstens, B. C., and T. A. Dewey. 2010. Species delimitation using a combined coalescent 
and information theoretic approach: An example from North American Myotis bats. 
Systematic Biology 59:400–414.

Carstens, B. C., T. A. Pelletier, N. M. Reid, and J. D. Satler. 2013. How to fail at species 
delimitation. Molecular Ecology 22:4369–4383.

Chambers, E. A., and D. M. Hillis. 2020. The multispecies coalescent over-splits species in 
the case of geographically widespread taxa. Systematic Biology 69:184–193.

Costello, M. J., R. M. May, and N. E. Stork. 2013. Can we name Earth’s species before they 
go extinct? Science 339:413–416.

Coyne, J., and H. Orr. 2004. Speciation. Sunderland: Sinauer.
da Fonseca, E. M., G. R. Colli, F. P. Werneck, and B. C. Carstens. 2020. Phylogeographic 

model selection using convolutional neural networks. bioRxiv. https://doi​.org​/10​.1101​
/2020​.09​.11​.291856

Dayrat, B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 
85:407–417.

de Queiroz, K. 1998. The general lineage concept of species, species criteria, and the pro-
cess of speciation: A conceptual unification and terminological recommendations. In 
Endless forms: Species and speciation, eds. D. J. Howard and S. H. Berlocher, 57–75. 
Oxford: Oxford University Press.

de Queiroz, K. 2005. Different species problems and their solutions. Bioessays 26:67–70.
de Queiroz, K. 2007. Species Concepts and Species Delimitation. Systematic Biology 

56:879–886.
Derkarabetian, S., S. Castillo, P. K. Koo, S. Ovchinnikov, and M. Hedin. 2019. A demonstra-

tion of unsupervised machine learning in species delimitation. Molecular Phylogenetics 
and Evolution 139:106562.

Earl, D. A. 2012. STRUCTURE HARVESTER: A website and program for visualizing 
STRUCTURE output and implementing the Evanno method. Conservation Genetics 
Resources 4:359–361.

Eckert, A. J., and B. C. Carstens. 2008. Does gene flow destroy phylogenetic signal? The per-
formance of three methods for estimating species phylogenies in the presence of gene 
flow. Molecular Phylogenetics and Evolution 49:832–842.

Ence, D. D., and B. C. Carstens. 2011. SpedeSTEM: A rapid and accurate method for species 
delimitation. Molecular Ecology Resources 11:473–480.

TNF_07_K50013_C007_docbook_new_indd.indd   156 22-03-2022   07:59:47



157Delimitation Using Molecular Data﻿

Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of indi-
viduals using the software STRUCTURE: A simulation study. Molecular Ecology 
14:2611–2620.

Excoffier, L., I. Dupanloup, E. Huerta-Sánchez, V. C. Sousa, and M. Foll. 2013. Robust demo-
graphic inference from genomic and SNP data. PLoS Genetics 9:10.

Faircloth, B. C., J. E. McCormack, N. G. Crawford, M. G. Harvey, R. T. Brumfield, and T. C. 
Glenn. 2012. Ultraconserved elements anchor thousands of genetic markers spanning 
multiple evolutionary timescales. Systematic Biology 61:717–726.

Flouris, T., X. Jiao, B. Rannala, and Z. Yang. 2019. A Bayesian implementation of the mul-
tispecies coalescent model with introgression for phylogenomic analysis. Molecular 
Biology and Evolution 37:1211–1223.

Fonseca, E. M., D. J. Duckett, and B. C. Carstens. 2021. P2C2M. GMYC: An R package 
for assessing the utility of the Generalized Mixed Yule Coalescent model. Methods in 
Ecology and Evolution 12:487–493.

Funk, D. J., and K. E. Omland. 2003. Species-level paraphyly and polyphyly: Frequency, 
causes, and consequences, with insights from animal mitochondrial DNA. Annual 
Review of Ecology, Evolution, and Systematics 34:397–423.

Grummer, J. A., R. W. Bryson, and T. W. Reeder. 2014. Species delimitation using Bayes fac-
tors: Simulations and application to the Sceloporus scalaris species group. Systematic 
Biology 63:119–133.

Haller, B. C., J. Galloway, J. Kelleher, P. W. Messer, and P. L. Ralph. 2019. Tree‐sequence 
recording in SLiM opens new horizons for forward‐time simulation of whole genomes. 
Molecular Ecology Resources 19:552–566.

Hebert, P. D. N., A. Cywinska, S. L. Ball, and J. R. deWaard. 2003. Biological identifications 
through DNA barcodes. Proceedings of the Royal Society B 270:313–321.

Hopkins, R., and M. D. Rausher. 2011. Identification of two genes causing reinforcement in 
the Texas wildflower Phlox drummondii. Nature 469:411–414.

Hortal, J., F. de Bello, J. A. F. Diniz-Filho, T. M. Lewinsohn, J. M. Lobo, and R. J. Ladle. 
2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review 
of Ecology, Evolution, and Systematics 46:523–549.

Hudson, R. R., and J. A. Coyne. 2002. Mathematical consequences of the genealogical spe-
cies concept. Evolution 56:1557–1565.

Huelsenbeck, J. P., P. Andolfatto, and E. T. Huelsenbeck. 2011. Structurama: Bayesian infer-
ence of population structure. Evolutionary Bioinformatics 7:EBO-S6761.

Jackson, N. D., A. E. Morales, B. C. Carstens, and B. C. O’Meara. 2017a. PHRAPL: 
Phylogeographic inference using approximate likelihoods. Systematic Biology 
66:1045–1053.

Jackson, N. D., B. C. Carstens, A. E. Morales, and B. C. O’Meara. 2017b. Species delimita-
tion with gene flow. Systematic Biology 66:799–812.

Jombart, T., S. Devillard, and F. Balloux. 2010. Discriminant analysis of principal com-
ponents: A new method for the analysis of genetically structured populations. BMC 
Genetics 11:1–15.

Kelleher, J., A. M. Etheridge, and G. McVean. 2016. Efficient coalescent simulation and gene-
alogical analysis for large sample sizes. PLOS Computational Biology 12:e1004842.

Kingman, J. F. C. 1982. The coalescent. Stochastic Processes and Their Applications 
13:235–248.

Knowles, L. L., and B. C. Carstens. 2007. Delimiting species without monophyletic gene 
trees. Systematic Biology 56:887–895.

Leaché, A. D., and M. K. Fujita. 2010. Bayesian species delimitation in West African 
forest geckos (Hemidactylus fasciatus). Proceedings of the Royal Society B 
277:3071–3077.

TNF_07_K50013_C007_docbook_new_indd.indd   157 22-03-2022   07:59:47



158 ﻿Species Problems and Beyond

Leaché, A. D., M. K. Fujita, V. N. Minin, and R. R. Bouckaert. 2014a. Species delimitation 
using genome-wide SNP data. Systematic Biology 63:534–542.

Leaché, A. D., R. B. Harris, B. Rannala, and Z. Yang. 2014b. The influence of gene flow on 
species tree estimation: A simulation study. Systematic Biology 63:17–30.

Leaché, A. D., T. Zhu, B. Rannala, and Z. Yang. 2019. The spectre of too many species. 
Systematic Biology 68:168–181.

Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46:523–536.
Mayden, R. L. 1997. A hierarchy of species concepts: The denouement in the saga of the spe-

cies problem. In Species: The units of diversity, eds. M. F. Claridge, H. A. Dawah, and 
M. R. Wilson, 381–423. London: Chapman & Hall.

McCormack, J. E., S. M. Hird, A. J. Zellmer, B. C. Carstens, and R. T. Brumfield. 2013. 
Applications of next-generation sequencing to phylogeography and phylogenetics. 
Molecular Phylogenetics and Evolution 66:526–538.

Miller, M. R., J. P. Dunham, A. Amores, W. A. Cresko, and E. A. Johnson. 2007. Rapid and 
cost-effective polymorphism identification and genotyping using restriction site associ-
ated DNA (RAD) markers. Genome Research 17:240–248.

Mirarab, S., R. Reaz, Md. S. Bayzid, T. Zimmermann, M. S. Swenson, and T. Warnow. 2014. 
ASTRAL: Genome-scale coalescent-based species tree estimation. Bioinformatics 
30:i541–i548.

Mora, C., D. P. Tittensor, S. Adl, A. G. B. Simpson, and B. Worm. 2011. How many species 
are there on earth and in the ocean? PLoS Biology 9:e1001127.

Morales, A. E., and B. C. Carstens. 2018. Evidence that Myotic lucifigus “subspecies” are five 
nonsister species, despite gene flow. Systematic Biology 67:756–769.

Morales, A. E., N. D. Jackson, T. A. Dewey, B. C. O’Meara, and B. C. Carstens. 2017. Speciation 
with gene flow in North American Myotis bats. Systematic Biology 66:440–452.

Nixon, K. C., and Q. D. Wheeler. 1992. Extinction and the origin of species. In Extinction 
and phylogeny, eds. M. J. Novacek and Q. D. Wheeler, 119–143. New York: Columbia 
University Press.

Padial, J. M., A. Miralles, I. De la Riva, and M. Vences. 2010. The integrative future of tax-
onomy. Frontiers in Zoology 7:6.

Palumbi, S. R., F. Cipriano, and M. P. Hare. 2001. Predicting nuclear gene coalescence from 
mitochondrial data: The three-times rule. Evolution 55:859–868.

Pante, E., C. Schoelinck, and N. Puillandre. 2015. From integrative taxonomy to species 
description: One step beyond. Systematic Biology 64:152–160.

Papadopulos, A. S., W. J. Baker, D. Crayn, R. K. Butlin, R. G. Kynast, I. Hutton, and V. 
Savolainen. 2011. Speciation with gene flow on Lord Howe Island. Proceedings of the 
National Academy of Sciences 108:13188–13193.

Pearson, D. L., A. L. Hamilton, and T. L. Erwin. 2011. Recovery plan for the endangered 
taxonomy profession. BioScience 61:58–63.

Pei, J., C. Chu, X. Li, B. Lu, and Y. Wu. 2018. CLADES: A classification-based machine 
learning method for species delimitation from population genetic data. Molecular 
Ecology Resources 18:1144–1156.

Pelletier, T. A., and B. C. Carstens. 2014. Model choice for phylogeographic inference using 
a large set of models. Molecular Ecology 23:3028–3043.

Pons, J., T. G. Barraclough, J. Gomez-Zurita, A. Cardoso, D. P. Duran, S. Hazell, S. Kamoun, 
W. D. Sumlin, and A. P. Vogler. 2006. Sequence-based species delimitation for the 
DNA taxonomy of undescribed insects. Systematic Biology 55:595–609.

Prada, C., S. E. McIlroy, D. M. Beltrán, D. J. Valint, S. A. Ford, M. E. Hellberg, and M. A. 
Coffroth. 2014. Cryptic diversity hides host and habitat specialization in a gorgonian-
algal symbiosis. Molecular Ecology 23:3330–3340.

TNF_07_K50013_C007_docbook_new_indd.indd   158 22-03-2022   07:59:47



159Delimitation Using Molecular Data﻿

Pritchard, J. K., M. Stephens, and P. Donnelly. 2000. Inference of population structure using 
multilocus genotype data. Genetics 155:945–959.

Pudlo, P., J. -M. Marin, A. Estoup, J. -M. Cornuet, M. Gautier, and C. P. Robert. 2016. Reliable 
ABC model choice via random forests. Bioinformatics 32:859–866.

Puillandre, N., A. Lambert, S. Brouillet, and G. Achaz. 2012. ABGD, automatic barcode gap 
discovery for primary species delimitation. Molecular Ecology 21:1864–1877.

Rabiee, M., and S. Mirarab. 2021. SODA: Multi-locus species delimitation using quartet fre-
quencies. Bioinformatics 36:5623–5631.

Raj, A., M. Stephens, and J. K. Pritchard. 2014. FastSTRUCTURE: Variational inference of 
population structure in large SNP data sets. Genetics 197:573–589.

Rannala, B., and Z. Yang. 2020. Species delimitation. In Phylogenetics in the genomic era. 
eds. C. Scornavacca, F. Delsuc, N. Galtier, 5.5:1–5.5:18. Self-published.

Reid, N. M., and B. C. Carstens. 2012. Phylogenetic estimation error can decrease the accu-
racy of species delimitation: A Bayesian implementation of the general mixed Yule-
coalescent model. BMC Evolutionary Biology 12:196.

Satler, J. D., B. C. Carstens, and M. Hedin. 2013. Multilocus species delimitation in a com-
plex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, 
Aliatypus). Systematic Biology 62:805–823.

Schlick-Steiner, B. C., F. M. Steiner, B. Seifert, C. Stauffer, E. Christian, and R. H. Crozier. 
2010. Integrative taxonomy: A multisource approach to exploring biodiversity. Annual 
Review of Entomology 55:421–438.

Scornavacca, C., F. Delsuc, and N. Galtier. 2020. Phylogenetics in the genomic era. Open 
access book available from https://hal​.inria​.fr​/PGE/.

Sites, J. W., and J. C. Marshall. 2004. Operational criteria for delimiting species. Annual 
Review of Ecology, Evolution, and Systematics 35:199–227.

Smith, M. L., and B. C. Carstens. 2020. Process-based species delimitation leads to identifi-
cation of more biologically relevant species. Evolution 74:216–229.

Sukumaran, J., and L. L. Knowles. 2017. Multispecies coalescent delimits structure, not spe-
cies. Proceedings of the National Academy of Sciences 114:1607–1612.

Thomé, M. T. C., and B. C. Carstens. 2016. Phylogeographic model selection leads to insight 
into the evolutionary history of four-eyed frogs. Proceedings of the National Academy 
of Sciences 113:8010–8017.

Weins, J. J., and T. A. Penkrot. 2002. Delimiting species using DNA and morphological vari-
ation and discordant species limits in spiny lizards (Sceloporus). Systematic Biology 
51:69–91.

Whittaker, R. J., M. B. Araújo, P. Jepson, R. J. Ladle, J. E. Watson, and K. J. Willis. 2005. 
Conservation biogeography: Assessment and prospect. Diversity and Distributions 
11:3–23.

Winker, K. 2009. Reuniting phenotype and genotype in biodiversity research. BioScience 
59:657–665.

Yang, Z., and B. Rannala. 2010. Bayesian species delimitation using multilocus sequence 
data. Proceedings of the National Academy of Sciences 107:9264–9269.

Yeates, D. K., A. Seago, L. Nelson, S. L. Cameron, L. Joseph, and J. W. H. Trueman. 2011. 
Integrative taxonomy, or iterative taxonomy? Systematic Entomology 36:209–217.

Zachos, F. E., L. Christidis, and S. T. Garnett. 2020. Mammalian species and the twofold 
nature of taxonomy: A comment on Taylor et al. 2019. Mammalia 84:1–5. https://doi​.org​
/10​.1515​/mammalia​-2019​-0009.

Zhang, C., M. Rabiee, E. Sayyari, and S. Mirarab. 2018. ASTRAL-III: Polynomial time spe-
cies tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19:153.

TNF_07_K50013_C007_docbook_new_indd.indd   159 22-03-2022   07:59:47



TNF_07_K50013_C007_docbook_new_indd.indd   160 22-03-2022   07:59:47


