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Highlights
Phylogeography makes inferences
about the evolutionary history of species
by using statistical models of historical
demography to analyze genetic data.
These models are increasingly complex
and sometimes applied in ways that
can compromise the quality of phylogeo-
graphic inference.

Inferences are most often derived from
estimates of evolutionary parameters
Phylogeographic studies base inferences on large data sets and complex demo-
graphic models, but these models are applied in ways that could mislead
researchers and compromise their inference. Researchers face three challenges
associated with the use of models: (i) ‘model selection’, or the identification of an
appropriate model for analysis; (ii) ‘evaluation of analytical results’, or the inter-
pretation of the biological significance of the resulting parameter estimates,
delimitations, and topologies; and (iii) ‘model evaluation’, or the use of statistical
approaches to assess the fit of the model to the data. The field collectively
invests most of its energy in point (ii) without considering the other points; we
argue that attention to points (i) and (iii) is essential to phylogeographic inference.
made using these models. Parameter
estimates are contextually dependent
on the model used to estimate the pa-
rameters and are informative only if the
model is a reasonable fit to the data.

A variety of approaches can be used to
assess model adequacy, from simple vi-
sual examinations to statistical goodness
of fit tests. The increased power and in-
terpretability of statistical approaches
justify their increased complexity.

A review of existing software packages
demonstrates that, when tests for
model adequacy are built into software
packages by developers, users are
more likely to conduct these analyses.
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The rise of phylogeographic models
The past decades have seen an exponential increase in the amount of genetic data that can be
collected from a given species [1,2]. For scientists conducting research into non-model systems,
this transition from data poor to data rich occurred rapidly and its effects are still being felt. For
example, at the time when high-throughput sequencing data became available, phylogeography
was in the process of transforming from a discipline in which inferences were qualitative and
based on visual patterns to one in which inferences result from the statistical analysis of
demographic models (see Glossary). Researchers suddenly needed to develop new protocols
in the wet lab, new bioinformatics resources, and, in many cases, new analytical methods. There
are now dozens of ‘off-the-shelf’ programs that implement demographic models (e.g., [3–6]), and
researchers can design models that are customized to particulars of their empirical system and
either perform model selection or parameter estimation using various software (e.g., [7,8]).
While the quantity of data and the widespread availability of complex demographic models are
boons to researchers, they create the potential for the misuse and abuse of models when inap-
propriate models are applied. Model misspecification can take many forms, from incorrectly
modeling the number of populations or lineages (i.e., delimitation misspecification), to incor-
rectly modeling the evolutionary relatedness among population lineages (i.e., topology
misspecification), to incorrectly modeling the evolutionary processes that have influenced the
system (i.e., parameterization misspecification). To complicate matters, these errors can
compound one another; for example, parameterization misspecification can lead to biases in
the estimates of other parameters (e.g., [9,10]). Fortunately, there are effective examples of
strategies that can be used to identify and limit the misspecification of demographic models.

Researchers who intend to make inferences from model-based analyses are faced with chal-
lenges inherent to three different issues. They must first identify an appropriate model for analysis,
whether by picking an available implementation of a particular model or by designing a custom
model. The use of phylogeographic model selection is one common approach. Second,
researchers must evaluate the results of the analysis; that is, interpret the biological significance
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Glossary
Cross-validation: simulate data under
a model (or models) and analyze simu-
lated data to assess accuracy of
parameter estimation (or model selec-
tion); cross-validation is applicable to all
approaches to model selection and
parameter estimation; built-in to some
pipelines, including ‘abc’ [50] and
DIYABC [28].
Delimitation misspecification: type
of model misspecification in which the
number of populations or lineages is
incorrect, or the assignment of individ-
uals to these groups is invalid. For
example, lumping individuals sampled
from two lineages into a single lineage
would be expected to increase esti-
mates of θ = 4Neμ and could lead to
inaccurate estimates of divergence time.
Demographic model: representation
of the evolutionary history of a focal sys-
tem, comprising sets of individual sam-
ples from populations or evolutionary
lineages (i.e., the delimitation of sam-
ples), the topological relatedness of
these sets (i.e., the topology), and the
evolutionary processes that influence
genetic diversity in the system (i.e., the
parameters). Evolutionary parameters,
such as divergence times (τ), population
sizes (θ), and migration rates (m), are
modeled based on values from empirical
data.
Goodness-of-fit test: evaluation of the
statistical fit of a particular model given
the data. These typically proceed by
summarizing any difference between
observed values of statistics and the
values expected under the model.
Model adequacy: evaluation of
whether the model is appropriate for the
empirical data, which proceeds by
assessing whether the degree of
observed variation in the data is
expected under the assumptions of the
model.
Parameterization misspecification:
type of model misspecification in which
the evolutionary processes that have
influenced a system are not modeled
correctly. For example, in systems in
which high rates of gene flow have
occurred, failure to model this process
can lead to inaccurate estimates of
divergence time [10] and, in some cases,
failure in species delimitation [43].
Parametric bootstrap: method for
assessing model fit by simulating data
under the maximum likelihood estimates
of the parameters of the model, calcu-
lating a summary statistic on the
of the delimitations, topology, and parameter estimates. Since such inferences are often the
goal of the entire research program, it can be tempting to stop here without attempting a critical
assessment of the results. However, researchers who confront the third challenge by
attempting to assess the statistical fit of the demographic model, for example, by conducting
a goodness-of-fit test or an exploration of model adequacy, are rewarded with important
contextual information about the confidence that they should place in the analysis. This third
step, while essential for interpreting parameter estimates and contextualizing results, is often
overlooked due to inherent difficulties in assessing the fit of the complex models often used,
limited computational resources, and the lack of out-of-the box software for assessing the fit
of many popular models. Here, we first discuss the role of models in phylogeographic
inference. Then, we examine the potential negative effects of model misspecification and dem-
onstrate how evaluating model fit can help to limit these effects. Finally, we discuss the limita-
tions of current approaches and future directions.

Identifying an appropriate model for analysis
Modeling the evolutionary history of an empirical system is ideally an integrative process, in which
researchers use both off-the-shelf and custom models, complete with assessment of model ad-
equacy for thesemodels, in combination with information from other types of data as the basis for
phylogeographic inference [11]. Clues about the appropriate demographic model(s) to use might
come from climate data, which can indicate regions of historical habitat stability (e.g., [12,13]);
paleopollen data, which can predict the presence of a species in a given region at some point
in the past (e.g., [14]); and geological data, which can suggest that diversification occurred at a
particular time (e.g., [15]). In cases in which an implemented model is available (i.e., off the shelf
as part of some program), researchers can estimate parameters under themodel, with inferences
made directly from these parameter estimates. In cases in which researchers design custom
models, they often turn to phylogeographic model selection, which facilitates integration of differ-
ent data types by providing the basis for decisions about which models to consider [11]. Using
this approach, researchers can select the best model from a predetermined set using objective
criteria (e.g., [16,17]).

The dangers of model misspecification
Regardless of how a model is chosen, all demographic models are incorrect to some extent
because natural populations are complex and the processes that shape genetic variation numer-
ous. Even though any model is necessarily a simplification of these processes, somemight still be
useful. However, since some model misspecifications can mislead inference, it is essential that
researchers are aware of such misspecifications so that they have appropriate confidence
in their results. Numerous studies have evaluated the effects of model misspecification in
phylogeography and related fields. For example, failing to model gene flow when it is present
can lead to underestimating divergence time and overestimating population size [10,18]. By con-
trast, unaccounted-for population structure within species appears to have little effect on param-
eter estimates under an isolation-with-migration model [19] but can mislead species delimitation
[20,21]. The effects of recombination appear to be minimal when some effort is made to use
nonrecombining blocks for inference [19], but misspecifying the model of nucleotide substitution
can lead to substantial inference errors [19]. Finally, ignoring the role of natural selection in
shaping genetic diversity can also bias parameter estimates [22]. When background selection
is ignored, population growth can be inferred even when the true population history is of constant
population size [23,24]. Ghost introgression (Box 1), or introgression from unsampled popula-
tions or species, is likely a common model violation and appears to have substantial effects on
parameter estimates [19]. If researchers are unaware of model misspecifications in their focal sys-
tem, they might place too much confidence in these results, which are potentially affected by this
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Box 1. Power analyses

To illustrate the process and benefits of assessments of data and model adequacy, we considered a simple scenario in
which researchers aimed to evaluate three models in fsc2 [21]. Briefly, three models (Figure I) were tested. We simulated
ten haploid individuals per population and 10 000 independent SNPs with the following priors: Ne = U(1000, 100 000
haploid individuals), t = U(1000, 100 000 generations),m = U(0.01, 20 Nm), and tm = U(1000, 50 000)). To assess power,
we simulated ten data sets under each model and then selected the best model using AIC following [30]. Results indicate
that statistical power was moderate for distinguishing among the three models. However, the divergence-only model
(Model 1) and divergence-with-gene-flow model (Model 2) were difficult to distinguish, and the secondary contact model
was sometimes mistaken for a divergence-only model. This difficulty in distinguishing models is likely related to the wide
priors on migration rates and divergence times. Knowledge of such error rates would prevent researchers from
overinterpreting results.

A common critique of demographic model selection is reality is likely more complex than any of the models in the model set
and, thus, the identification of a ‘best’ model from a set of inadequate models might not be helpful. To evaluate this sce-
nario (i.e., when reality is more complex than the set of evaluated models), we also simulated ten data sets under a model
that included gene flow from an unsampled ghost population into one of the two populations (Model 4; Figure I), with the
expectation that this could lead us to select a model of gene flow between the two populations even though this was not
the true history [19]. We simulated ten data sets under this model, using the same priors as used for the other models.
Gene flow began in the present and ended halfway between the present and the first divergence time in the model. We
repeated the power analysis (described earlier), and found that the divergence with gene flow model was selected in
90% of replicates (Table I). These results suggest that an empirical investigation that relies on model selection might incor-
rectly infer gene flow among two sampled populations due to the presence of gene flow into one of these populations from
an unsampled outgroup. Conducting an analysis designed to evaluate the statistical fit of the model to the data (see Box 2
in the main text) is an important next step.
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Figure I. Example models of historical demography. Evolutionary parameters, such as divergence time (τ),
population sizes (θ), and gene flow (mi), are modeled based on values from empirical data. The particular models
evaluated using fsc2 in Boxes 1 (upper) and 2 (lower) in the main text are shown here.
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simulated data sets, and comparing the
same statistic calculated on empirical
data with this null distribution. Paramet-
ric bootstraps can be applied in hypoth-
esis testing (e.g., [51]) or model selection
(e.g., [32]).
Phylogeographic model selection:
objective evaluation of a set of historical
demographicmodels, in which statistical
techniques, such as Akaike information
criterion (e.g., [52]), approximate Bayes-
ian computation (e.g., [16]), or machine
learning (e.g., [17]), are used to rank and
identify the best models in the set.
Posterior predictive simulation
(PPS):method for assessingmodel fit in
a Bayesian context by drawing parame-
ters from posterior distributions, simu-
lating data under those parameters,
analyzing the simulated data to generate
‘posterior predictive distributions’, and
comparing these distributions to the
original posterior distribution (or to sum-
mary statistics); for more information,
see Box 3 in the main text.
Topology misspecification: type of
model misspecification in which the
topology of the evolutionary lineages is
represented incorrectly, leading to
potential errors in estimates of θ = 4Neμ,
divergence times, or other evolutionary
parameters.
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Table I. Example of power analysisa

Simulating model Model 1 Model 2 Model 3

Model 1 0.4 0.5 0.1

Model 2 0.3 0.7 0

Model 3 0.2 0 0.8

Model 4 0.1 0.9 0

aEach row shows results from the fsc2 analysis of data simulated under the respective model. Values in each column show
the proportion of replicates for which the generatingmodel was selected as the bestmodel using AIC values and information
theory.

Trends in Ecology & Evolution
misspecification. Thus, approaches that allow researchers to assess model fit and to understand
how this might affect inference are essential for robust phylogeographic inference.

Assessing model fit
Assessments of model fit enable biologists to ask how well the model they are using to an-
alyze the data explains the pattern of variation in the genetic data. While phylogeographers
already frequently use model selection to select from among a set of models the model
that best fits their empirical data (e.g., [17]), assessments of absolute model fit are not al-
ways utilized (or possible) under commonly used approaches. In phylogeographic model se-
lection, researchers can only ask which of a set of models best fits their data, and not
whether the models provide a good fit to the observed data [25]. Thus, results can be pos-
itively misleading when researchers have selected the least-bad model from a set of models
that all offer a poor fit to the data. Since all models are a simplification of reality, assessments
of model fit that are also informative with respect to whether model violations are likely to
affect inference are the most valuable to phylogeographers. An ideal approach would allow
researchers not only to detect model violations, but also to infer which factors are responsi-
ble for poor model fit and how likely these factors are to affect various aspects of inference.
Given that genetic data do not fit the assumptions of standard statistical distributions, such
as χ2, which are used to assess model fit in other contexts, biologists often rely on data sim-
ulation to build test distributions for assessments of model fit. Simulations are performed
under the selected model and estimated parameters to construct test distributions. These
test distributions can then be compared with the observed data to assess how well the
model reproduces the characteristics of those data, with large differences in the distributions
indicating that the model fits the data poorly. Visual approaches to model checking,
parametric bootstrapping, or posterior predictive simulation (PPS) can be used to
assess model fit.

Visual approaches
Visual approaches do not allow any statistical quantification of model fit, but can alert users to
blatant model violations [26,27]. The most popular visual checks commonly applied to assess
model fit are principal component analysis (PCA) and linear discriminant analysis (LDA). For ex-
ample, in the popular software package DIYABC [28,29], users can assess whether their priors
produce data that are compatible with their observed data using LDA by projecting the first two
axes of their simulated and observed data and visually assessing whether observed data fall
into the cloud of simulated data. This approach requires minimal computational resources,
as the prior must be simulated before inference for many approaches to demographic model
selection (e.g., approximate Bayesian computation; ABC). However, power to detect model vi-
olations is likely limited with these approaches because there is no formal assessment of model
fit.
Trends in Ecology & Evolution, May 2022, Vol. 37, No. 5 405
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Parametric bootstraps
Parametric bootstraps have long been used to test hypotheses in phylogenetics and
phylogeography (e.g., [11]); they utilize data simulation under the maximum likelihood parameters
estimated under some model to build a test distribution that can be used to evaluate the fit of the
model to the empirical data. For assessing model adequacy, a goodness-of-fit test proceeds by
simulating data under the maximum-likelihood parameter estimates made from some model
(e.g., [7]) before calculation of the likelihood ratio G-statistic [30] using Equation 1:

CLR ¼ log10
CLO
CLE

½1�

where CL0 is the observed likelihood and CLE is the estimated likelihood for both the simulated
and observed datasets. Finally, the user calculates the P value of the observed statistic and
assesses whether the model is a poor fit to the data. Ideally, this P value will be close to 0.5,
indicating that the model is a good fit to the data, but most practitioners choose an α level of
0.05 for a threshold that designates a significant model violation. We provide an example of the
use of this test to assess model adequacy in Box 2.

Posterior predictive simulations
PPS is a Bayesian version of the parametric bootstrap used for model checking in a Bayesian
framework [31]. PPS samples from the posterior distribution of an empirical analysis and
simulates data using these samples under the model used to analyze the data, creating a
posterior-predictive distribution. Next, test statistics calculated from both the empirical and
posterior-predictive distributions are compared.

When the posterior-predictive distribution is similar to the observed data as quantified by the test
statistic, the user concludes that the model is a reasonable fit to the data, but when the posterior-
Box 2. Composite likelihood ratio test

Next, we performed composite-likelihood ratio (CLR) tests following Excoffier et al. [7] to assess how well the data fit each
model (see Figure I in Box 1). For eachmodel, we assessed whether we could detect violations of each of the three original
models by simulating 100 bootstrap site frequency spectra (SFS) from themaximum-likelihood parameter estimates under
each model. We then performed parameter estimation, estimated the composite likelihood for these data sets under each
model, calculated the difference in the observed and estimated likelihood for each bootstrap data set, and compared this
with the same calculation for the original data sets [7]. We calculated the P value as the proportion of times the difference in
observed and estimated likelihoods from the bootstrap replicates exceeded the value for the original data sets, and we
considered P <0.01 to indicate model violations. For the first three models, we never detected a model violation when
evaluating the model used to simulate the data, and our ability to detect violations of the other two models varied
(Table I). However, for data sets generated under the ghost introgression model, we nearly always detected model viola-
tions, except for a single replicate, which was not detected as violating the secondary contact model. This suggests that,
although model selection results could have been misleading, a CLR test would have prevented researchers from
overinterpreting incorrect results by identifying model violations.

Table I. Example application of CLR tests of model fit using fsc2a

Model 1 Model 2 Model 3

Model 1 0 0 0.4

Model 2 0.5 0 0.5

Model 3 0.8 0.1 0

Model 4 1 1 0.9

aEach row shows results simulated from the ‘simulating model’, and each column the proportion of replicates (of ten
replicates) for which a model was rejected using the CLR.
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predictive distribution differs substantially from the empirical data, the user concludes that the
model is a poor fit. The distributions are generally compared using posterior predictive P values
(see [26,27] for more detailed discussion). PPS has been used in a variety of contexts in phyloge-
netics and phylogeography (Box 3).

Choice of test statistics
The choice of test statistics is essential to both the parametric bootstrap and PPS. Test sta-
tistics can be broadly divided into inference-based and data-based statistics [32]. Inference-
based statistics require that researchers analyze posterior predictive data sets using the
same inference methods and model as used for the empirical data. Then, some test statistic
based on this analysis is calculated and compared between empirical and posterior predic-
tive data sets (see [33–37] for examples). Inference-based statistics have been lauded be-
cause they allow researchers to not only assess whether a model is violated, but also to
understand how that violation might affect inference [32,33]. However, such statistics can
be computationally intensive to calculate since they require that full inference be performed
on each posterior predictive data set. Data-based statistics are calculated directly from em-
pirical data and posterior predictive data and, as such, are easier to calculate than are infer-
ence-based statistics. The choice of test statistic should ideally provide a balance between
computational feasibility, power to detect model violations, and informativeness as to the as-
pect of the data that drove the model violation and the likely effects of the model violation on
inference. Many approaches for assessing model fit use several complementary test statis-
tics (e.g., [32,34,36,38–40]).
Box 3. Applications of posterior predictive simulations

PPS have been used in many evolutionary investigations. Inspired by a symposium at the 2012 Evolution Annual Meeting
sponsored by the Society of Systematic Biologists, the past decade has seen an increase in software development to
assist researchers in performing PPS analyses.

Phylogenetics

Some popular phylogenetics applications have built-in methods for conducting posterior predictive checks. For example,
RevBayes includes P3 for checking model adequacy for phylogenetic analyses [29]. Similarly, BEAST includes
TreeModelAdequacy for assessing phylodynamic models commonly used for analysis of pathogens [39]. In addition, sev-
eral packages have been designed to supplement various phylogenetic analyses, including Posterior Predictive Checks of
Coalescent Models (P2C2M) [40] and modadclocks [42]. Examples of these methods in application to empirical research
include [43,44].

Species delimitation

PPS analyses have also been used to evaluate model adequacy for species delimitation. For example, Barley et al. [20]
applied PPS to assess the adequacy of the multispecies coalescent for conducting species delimitation with two delimi-
tation methods, finding that violations of the multispecies coalescent can negatively affect species delimitation, but that
these violations can often be detected with PPS. Additionally, Barley and Thompson [34] showed that the substitution
model can have important effects on the number of operational taxonomic units delimited when using the Automated
BarcodeGapDiscoverymethod of species delimitation. Fonseca et al. [35] provide an implementation of P2C2Mdesigned
to assess the model adequacy of the Generalized Mixed Yule Coalescent model.

Historical demography

PPS can be efficiently applied when examining historical demographic models with ABC because summary statistics are
calculated for the empirical data set as part of the ABC process. For example, Gao et al. [45] used PPS to show that a
model of population bottlenecks provided a good fit in Chinese mountain pines (Pinus densata). Additionally, Tsuda
et al. [46], used PPS to show that a model incorporating gene flow during divergence fit their empirical data better than
did a model without such gene flow. The program DIYABC includes functions for conducting PPS when performing
ABC in R [47]. PPS has also been applied to assess admixture models (e.g., [48]) and to identify loci under selection given
demography (e.g., [49]).
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Outstanding questions
Which summary statistics are most
appropriate for assessing model fit?
Simulation studies are essential to
determining the appropriate statistics
for detecting violations under specific
models. Carefully curated statistics
can provide insight into not only
whether a violation has occurred, but
also why and whether the violation is
likely to mislead inference.

When will model violations mislead
inference? Since all models are
necessarily misspecified to some extent,
it is essential not only to identify model
violations, but also to understand the
practical implications of such violations.

What types of evolutionary process
are most likely to lead to model
misspecification? Genetic variation
in all species is influenced by a
complex mix of evolutionary processes.
As more researchers conduct thorough
investigations into model fit in a
range of systems, we are likely to
better understand which evolutionary
processes are likely to lead to
misspecification when ignored.

How can checks of model adequacy
be faster? One downside of some
model checks is that they demand
a large quantity of computational
resources. Researchers are more
likely to conduct model checks when
doing so is fast and easy.

How can evaluations of model adequacy
be incorporated into more software and
analytical pipelines? While evaluations
of model adequacy are theoretically
straightforward in many Bayesian and
Likelihood applications, it is less clear
how model checks can be performed
in other contexts. For example,
machine learning has become a
popular tool for phylogeographers, but
is it unclear how to assess model fit
in many deep learning algorithms.
Effective strategies for the proper use of demographic models
Empirical systems represent a single replicate of an experiment of unknown design that are po-
tentially complex in ways that are impossible to quantify. The most effective strategy for making
evolutionary inferences despite these difficulties is one in which researchers are open to explo-
ration and willing to quantify uncertainty and assess model fit. After choosing a model, re-
searchers should use a statistical approach to assess model fit, such as PPS or parametric
bootstraps. When model violations are identified, researchers should exercise appropriate
caution and quantify the certainty in their inferences. Researchers might attempt to isolate
which aspect of the model is violated by applying different test statistics or by considering
and testing alternate models. Simulations designed to explore model adequacy and the effect
of specific model violations on parameter estimates are recommended. In any event, designing
custom tests for empirical systems requires researchers to critically evaluate the source of in-
ference in their study; for example, are inferences based on parameter estimates or the
model itself? Researchers with a clear understanding as to the goal of the investigation and
how the model will be used to accomplish this goal can prevent themselves from being misled
by model misspecification. The end result should involve inference under the best model that
the researcher was able to identify, a quantification of the fit of that model to the data, and an
assessment of the amount of confidence that should be placed in parameter estimates
under the model.

Barriers and future directions
To better understand how often and under what conditions researchers take steps to evaluate
model fit, we conducted a literature review of studies that used popular software for model selec-
tion. We identified recent publications that cited either DIYABC [28,29] or fastsimcoal2 [7] using
Google Scholar, filtered out studies that did not conduct empirical model selection, and deter-
mined whether the authors of the remaining studies conducted a check of model adequacy.
Users are more likely to implement some assessment of model fit if the method is built into the
program and computationally feasible. For example, DIYABC offers a built-in visual assessment
of model fit by allowing users to perform a PCA and plot empirical and simulated data sets,
and more than half of users (51%) adopted this approach. It also includes a method for cross-
validation. By contrast, ~6% of users adopted the goodness-of-fit test suggested by Excoffier
et al. [7]. This test is more computationally demanding because it requires that the user perform
simulations under the maximum likelihood parameter estimates and also asks the user to analyze
these simulated data sets individually, a process that requires the development of custom scripts.
Clearly, ease of implementation and computational tractability are huge determinants of when re-
searchers will assess model fit. Furthermore, when software packages offer flexibility in terms of
the type of inference used, it can increase use. For instance, in RevBayes [41], both inference-
based and data-based test statistics are available, and this program is widely applied in phyloge-
netic analysis. Future work should aim to implement evaluations of model fit either as additional
easy-to-use software packages or, ideally, as a component of the software packages used for
model selection and parameter estimation. In the meantime, even suboptimal assessments of
model adequacy are likely better than ignoring this question entirely.

Concluding remarks
Although demographic models offer a powerful approach to phylogeographic inference, appropri-
ate caution when interpreting results is vital. Assessments of model fit can allow researchers to
identify model violations that might impact inference and should be an integral part of phylogeo-
graphic investigations. Future work to evaluate the power of various test statistics, and to provide
easy-to-implement assessments of model fit for popular software packages would improve the
rigor of phylogeographic research. See Outstanding questions for more details.
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